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Abstract

A Study and Model of Human

Indexing Behavior

Caryl McAllister

This dissertation examines the relationships between a

document being indexed and the index terms assigned to that

document in an attempt to quantify the extent of "machine-

like" indexing occurring when librarians and scientists index

tA?.chnical text.

A number of possible relationships between the text and

the index assignments are predicated and tested with two

models: a multiple linear regression model and a Boolean

combinatorial model. The models test two classes of

relationships for the best relationship in that clasS. Both

models find and correlate textual evidence in the document

for a given index term with the descriptors assigned by the

indexers. In all, some sixty types of textual evidence (or

clues) are considered.

For the experiment twelve indexers were divided into two

groups of six each:. professional librarians and engineers or

scientists.. Bach subject izticaxed ali twenty sample

documents. There was a significant difference between the

amount of librarian indexing and the amount of

engineer/scientist indexing accounted for. Although the

difference was not great, the engineers and scientists proved

6
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to be less predictable than the librarians on the basis of

the textual clues.

Over the entire sample of documents and for all indexers,

the regression model accounts for about 30% of the indexing.

For a single doCument, however, as much as 40 to 80% of the

indexing can be explained by the regression model. The

location and type of textual clue deemed important by the

indexers varies considerably from document to document.

Hence variations in clvie "style" among documents lowers the

overall percentage because the entire sample is a compromise

position for all the documents.

Regressions run on four single indexers show a very small

correlation between cl,aes and Indexing ranging from 7 to 22%.

Individually the indexers are less predictable ,then the

group.

The information from the Boolean combinatorial model is

less comprehensive primarily because not ent,ugh computer time

was available for a full development of the model. Based on

a one-third sample, the model correctly predicted about 65%

of all indexing decisions. No other combinatorial runs were

made.

It is concluded that 'indexers in general do not index

technical text in a "machine-like" fashion'and that neither

model is useful as a general predictor of human indexing.

cri
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Chapter One

INTRODUCTION
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1. Introduction

The information explosion is r. widely recognized

phenomenon. Increasing numbers of people engaged in researr"-

have produced increasing numbers of papers reporting that

research. libraries, engaged in the business of making that

research available on demand, must process increasing numbers

of such documents. This processing remains a major library

bottleneck.

Tn addition to the investment n clerical labor and

paperwork to acquire A document, a library often must also

spend professional labor indexing it. This indexing makes it

possible for patrons to find the parti,nalar items they want

in a large collection without having tO read the entire

collection. The document and the index entries for a

document are stored in some convenient place so that someone

wishing to use the library or information center may search

the indexes to locate it,

Two tools have been developed to aid indexers: indexing

rules and lists of approved index headings. While both rules

and headings are commonly available to aid in author

indexing, subjdct indexing is quite another story. 119re,

lists of approved headings (also called thesauri) are

plentiful, but there are only vague and imprecise notions of

how an indexer should go about choosing the most appropriate

headings out of the approved list for the document at hand.
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Even though a large part of a document retrieval system's

resources are devoted to this task, the question of how

people do subject indexing has been the subject of much

conjecture and only a little experimentation. There have

long been arguments in the literature about the educational

requirements for indexers. If indexers do little more than

copy words from the document, we shouldn't be paying

graduate-level subject experts to do the job. On the other

hand, if indexers are involved in some rather sophisticated

decision-making, we shouldn't be talkifig so glibly about

substituting machines for people.

Only in biomedicine has anyone attempted even a partial

answer to the question of how people go about indeximg. Yet

none of the biomedical studies has been conclusive enough to

answer the question even for that particular field. And no-

one has tried the experiment for less idiosyncratic

literature than medicine.

For some time,. researchers interested in automatic

indexing have been proposing that machines should choose

index terms on the basis of machine-recognizable textual

clues present in the text. Such clues as noun phrases, word

frequency or location, word stems and synonyms have been

suggested. If textual clues account for a large part of a

human indexer's behavior, then it might be feaible to

automate indexing. And if this behavior can be modelled- the

model could form the basis for just such an automatic

indexing system. If, on the other hand, mechanically-
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recognizable clues do not, account for a large part of a human

indexer's behavior, automatic indexers would have to go

beyond simple taxtual clues to do human-like indexing.

Because of the strong interest in machine-recognizable

textual clues for automatic indexing, because of the numerous

suggestions that human indexers do little more than word

matching, and because a very large proportion of any

reference retrieval system's budget is invested in Indexing,

this thesis attempts to answer the question: To what extent

do machine-recognizable textual clues account for htman

indexer behavior?

To highlight the influence of training on indexing, we

use indexers of two kinds: librarian-indexers, who by

training and experience ought to know- how to go about

indexing, and scientist-indexers, who by training and

experience ought to be most familiar with the subject,matter

to be indexed. Differences in indexing behavior between the

two groups are of interest. We are also interested in the

textual clues themselves and attempt to isolate those clues

wlich contribute most to the explanation of human indexing.

To do this-effectively, a large number of clues and selection

rules'are covered systematically.

Chapter 2 reviews previous studies of human indexing and

the indexing rules that have been suggested fcr automatic

indexing. Besides surveying commonly quoted human rules,

this chapter points out that rules used by humans are not, in
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fact, rules but general behavioral guidelines. The

discussion of previous models of human indexing behavior

points out the strengths. and weaknesses of these studies.

The analysts of rules used for automatic indexers shows the

variety of rules discussed in the literature and suggests the

types of textual clues which should be accounted for in the

indexing models. The textual clues and the assignMent rules

used in the ' io models are discussed in this chapter.

The odels developed in the thesis are presented in

Chapters 3 Fn_ 4 The first is a multiple linear regression

model chosen for its statistical and predictive pro;-.7irties.

The second is a combinatorial model which is used to test

many of the clues summarized kn the second chapter. Each

model has advantages and disadvantages. Taken togethere they

coriplement each other. Both models quantify the extent to

vhich machine-recognizable textual clues account for indexer

behavior. Either can act in a predictive manner. Chapter 3

presents the regression model, statistical tests for

regression and the computer program used for regression.

Chapter 4 presents the same information for the combinatorial

model.

Chapter 5 discusses the experimental procedures and gives

descriptive information about the experimental samples. The

computer programs written to obtain and analyze the data and

to calculate results are presented in some detail in this

section.
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The conclusions of the thesis and suggestions for further

research are in Chapter 6.
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Chapter Two

A REV/EW OF INDEXING RULES

FOR HUMANS AND MACHINES

14



2. A Review of Indexing Rules for Humans and Machines

2.1 Rules for Tndexers

For the purposes of this discussion we must distinguish

between a Procedure and a Guideline. A Procedure is a set of

exact and detailed rules which invariably lead the perforiar

to the same outcome provided he is gi,:en the same input.

Most computer programs are Procedures because, given the same

input they operate on this input in exactly the same way each

time to produce exactly the same output. The performer of

the Procedure need not be a machine, however. Suppose I cline

you instructions for getting to my house from San Francisco.

These instructions might include taking certain roads,

turning in a specified direction at certain intersections,

-anZ so forth. If you follow these .instructions, then you

will arrive at my house. There is a guarantee that if the

directions (the proCedure) are followed, the result (arriving

at my house) is assured. Of course, there is no guarantee

that everyone arriving at my house has followed the same

directions to get there.

In contrast, _Guidelines have nO guaranteed outcome. A

Guideline i$ a set of warnings or cautions which are not

detailed enough to invariably lead the Performer to the same

outcome even when given the same input. For instance,

might tell you to: head South; if speed is essential, take

the freeway; watch for signs; use a map. These Guidelines

tell you to watch for signs, but don't say which signs. They
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suggest that a map might be helpful, but don't t 1 exdotly

how a map is to be used or how it migh" a helyful.

Guidelines for getting to my house won't gurar' arrival

and they certainly won't guarantee that eve:7yonc ising them

will get to my house in the same way.

Let us draw .the analogy to human indexing. fenti_ri is

made in the literature of "indexing rules". Thes tles are,

in fact, Guidelines, not Procedures. They do not guarantee

that anyone who follows them will arrive at the saze index

set.. Proof of this may be found in indexinc consensus

studies (Hooper (1965), St. Laurent (1966)) where the same

instructions, thesaurus vocabulary and documeLs almost

invariably lead to different index sets when used by

different indexers or even the same indexer at different

times. 'We will review some of these indexing guidelines here

because they are important for understanding how indexers go

about their task.

Based on experience with chemical literaure in an

industrial company, Carol Penn (1962) outlines indexing as

the search for answers to four groups of guestiots. Penn

says the indexer first asks "What information is in this

docuMent, how is it organized, and into how many intellectual

components is it subdivided?" No procedure is given for

deciding what constitutes "information", but Penn suggests

that the indexer read the most ciondensed document statement

first (the title), and then work toward the most narrative

(the abstracto then paragraph headings, and finally the full

16
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document) . This suggestion is, in part, a procedure because

it tells the indexer where and in what order to look. It

does not, however, tell the indexer what to look for or when

to stop looking.

The second question is: "Bow are the overall document

and each of its component subdivisions related to or

identifid with the current and anticipated activities of the

users?" This is an identification of the information from

the point of view of the user as well'as the author. The

terminology of the author is put into relationship with the

accepted terminology of the user group. But: the terms

"component subdivisions", and "current and anticipated

activities of the users" are not defined, nor are any

instructions given for finding out just what these current or

anticipated activities might be. In order to estimate

potential usefulness, indexers would have to estimate the

likelihood that a project might be undertaken. But to expect

indexers to predict the course of scientific investigation is

to turn them into managers of scientific projects. This

second rule, therefore, serves primarily as a warning to

indexers that the needs of the users are an important factor

in a reference retrieval system.

The. next question iS: "How new, how reusable or how

origindl is the information in each component?" Penn argues

that if the indexers cannot judge which information the users

will consider new and interestiq, then the indexing depth

will be too great or too shallow. This rule requires that

17
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the indexer know the state of knowledge of present and future

system users. This is an obviously impossible condition, yet

it pcints to a common-sense notion that indexers shouldn't be

indexing the obvious. The difficulty lies in deciding what

is and what is not obvious.

To answer the last question: How should information be

described? the indexer rephrases the mental picture of the

document into descriptors from the.thesaurus. If, indeed,

the document ls understood, then the indexer does have some

idea of what the author iv saying - he has a mental picture

of the subject(s) of the document. But this does not assure

that two index43rs will have identical mental pictures nor

does it assure that the interpretation of this mental picture

into index terms mill produce identical results.

In general, then, Penn's rules are cautions to warn the

indexer that the subject content of a document, the

activities and the subject expertise of the users, and the

thesaurus vocabulary of the system are important and should

be considered when indexing.' But these cautions do not

consitute a Proctadure.

Other published indexing rules are similar to Penn's.

BPrnier (1965, 326) suggests the following: 1) choose to

index those subjects which are novel, emphasized2 Or

extensively reviewed, 2) inftex to the maximum specificity

warranted by the author, 3) choose those terms most

frequently used in the field, 4) provide guidance (cross-

18
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references) among headings and from synonyms, 5) check all

index ent.::ies for accuracy, 6) use modifying phrases to make

subject terms more specific and to provide better guidance.

Again, these are cautions to the indexer about subjects that

are novel, the maximum level of indexing specificity, etc.

Bernier's rules substantiate the fact that so-called indexing

rules are not procedural. Rees (1962) and MacMillan and Welt

(1961) agree.

We have pointed out the vagueness and imprecision

inherent in the indexing "rules" to be found in the

literature. The business of indexing is no more procedural

when seen from a philosophical point of viev. Wilson (1968)

discusses several ways one might determine the subject of a

document. Fcr instance, an indexer might list, sentence by

sentence, what a document was about. The list could

justifiably include the names of the objects mentioned in

each sentence, or the names of the concepts employed by the

author in expounding on his subject, or the names -of the

things Or individuals indirectly referred to, or any

combination of these. While it is possible to JTecognize

obviously wrong entries on this list, knowing what is

obviously wrong does not resolve the many occasions when

indexers can differ considerably in acceptable indexing

assignments. Wilson's arguments point out, once again, that

indexers are operating with Guidelines.

7n conclusion then, we have seen t 'It the indexing rules

hume.ns profess to use are' not Procedn.:es, but Guidelines.

19



13

Indexing rules may give general guidance; they dc not

constitute a how-to-do-it course. According to the dictates

of the indexing profession, indexing is an art, not a

science. Consciously, at least, human indexing involves a

great deal of judgement, subject eNTertise, knowledge of the

users and of the document retrieval system. None of these

things is easily automated by present day standards of

artificial intelligence.

This is not to say that we cannot use a Procedure to

mimic human indexing. As the next section demonstrates, what

indexers do and what they say they do may be quite different

things.

20
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2.2 'Results of Human Indexing

Instead of investigating what indexers say they do, some

experimenters have tried to find out what indexers do by

looking at the index sets produced. Studies of this kind

cannot claim to have investigated the paths indexers used to

arrive at a particular index set. However, possible

hypothetical mechanisms for reaching a particular index set

can be investigated and the outccMe of these artificial rules

can be compared with the outcome of human indexing.

Fels and Jacobs (1963) were interested in the extent to

which indexers became "linguistically creative" when

indexing. They defined three sources of indexing terms: 1)

words occurring in the t,ext, 2) synonyms for text words, and

3) paraphrases of the text. TheSe types of indea terms are

increasingly "creative". Using random samples taken from

state and federal statutes, straight term selections

constituted 63 to 91% of the index set, synonym substitutions

ranged from .5 to 5.8% and paraphrases from 7.4 to 33.7%.

The statistics quoted -indicate that legal indexers, at any

rate, are not particularly creative linguistically. Note

that although this study indicates where the indexing words

came from, it does not indicate how the indexers arrived at

particular index entries.

A study by Mo'ntgomery and Swanson (1962) strongly

substantiates Fels and Jacobs. They chose- subject headings

at random from Index Medicus. Each of the titles indexed
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under each of these headings was compared with the heading

itself. In 86% of the cases the sqbject heading or a synonym

for it, appeared in the title.

.0Connor (164) later disagreed with the Montgomery-

Swanson study. He argued that it ignored subdivisions of

subject headings and used synonymp inconsistently to obtain

the high degree of'matching. To substantiate his points, he

tried the Montgomery-Swanson indexing rules on titles from

three medical indexing systems. Based on samples of 50

titles from each of the systems, the heading-title

correlation in these samples ranged from 19 to 45% in the

first system, from 40 to 68% in the second, and from 13 to

39% in the third. This is in sharp contrast to the 86%

agreement obtained by Montgomery and Swanson. At least as

far as medical text is concerned, there is little agreement

on the profitability of using title words and their synonyms

as an artificial procedure for imitating human indexing.

A few studies have been made of indexing in engineering.

Slamecka and zunde (1963) found'807 of the humanly-assigned

index terms in the abstracts of 30 documents from Scientific

and Technical Aerospace Reports. Bottle (1970) compared the

titles of articles with.humanly-assigned subject headings for

each article. Titles were chosen from Applied Science and

Technology, British Technolog/ Index amet Engineering Index.

From 48 to 68% of the titles either watched the assigned

heading or contained a syntactic variant or a synonym for it.

GraveS and Helander (1970) compared titles and abstracts

22.
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taken from Petroleum Abstracts with the humanly-assigned

index terms. Exact and synonym matches accounted tor 40% of

the humanly-assigned index terms. Although each of these

"les was in the same general subject area of engineering,

the percentage of human index terms accounted tor ranged from

40 to 80%.

The studies discussed up to this point investigated

possible mechanisms for arriving at the same indexing humans

produced. All of the studies worked from the already-

assigned index set backwards to the text. In effect, this

approach covers only half of the problem. It accounts for

where the index term came from; it provides a textual

justification for the assignment of each index term. But it

does not tell how many matches with other subject headings

might have occurred. For instance, suppose the title "Real-

time Input Preprocessor for a Pattern Recognition Computer"

were compared with the snblect heading "Pattern recognition".

There is an exact match between the subject heading- and a

portion of the title. This would be countea as one instance

of an exact thesaurus-title match in the studies discussed

above. But this same title also matches two other subject

headings: "Real-time computer Systems" and "Input

preprocessors for computers". These matches were ignored by

the above studies. Although these studies kept track of the

index terms or subject headings which were assigned, they did

not try to explain why other terms were not assigned. Both

explanations are required in a complete model.
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In later experiments, O'Connor tried several methods for

obtairling manually assigned index terms from full document

text (1961, 1962, 1965). He chose two index terms,

Itox5cityl and 'penicillin', from the thesaurus of

operational 10,000-document system. He then tried to

formulate rules for assigning the documents to the

appropriate subject heading without assigning other documents

in the collection to that subject heading. In the end, a

quite complicated indexing rule was formulated for each

thesaurus term. These rules, while assigning ',toxicity' to

most of the toxicity papers, also assigned' °toxicity' to non-

toxicity papers. To counteract the over-assignment, without

casing concomitant under-assignment, O'Connor used minimum

frequency requirements, location- of the toxicity clue in

specific parts of the document, etc.

The rules formulated on an initial group of toxicity

papers were then tested on a second group of papers from the

same system. They correctly selected 92% of the toxicity

papers, at the cost of over-assigning "toxicity" to 18% of

the non-gtoxicitye papers. The'computer-simulated rules were

comparable with the system's regular human indexers who

correctly assigned about 80% of the toxicity papers with a 2%

over-assignment.

A similar procedure was followed for the term

'penicillin' resulting in another set of simulated computer-

assignment rules. These rules correctly selected 97% of the

penicillin papers at the costof a 4% over-assignment. In
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:_;ontrast, indexers correctly assigned about 75% of the papers

and over-assigned less than 2%.

Although the artificial indexing rules O'Connor devised

work quite well for 'penicillin' and °toxicity', there are

some difficulties with his scheme. First, because each

thesaurus term requires a different rule, the invention,

programming and use of such rules for a real-life thesaurus

(say, 20,000 terms) is almost a prctical impossibility.

Second, the two sample .11fex terms selected for study were

both single words, and re posted on a rather high

proportion yoy th- dc-:ments (1500/10,000 for

toxicity and 700/10,000 enicillin). Such heavy posting

is most unusual and occr_ on fewer than 2 or 3 percent of

the terms even in very collections (Houston and Wall

(1964)). Third, the study was done on biomedical literature

which typically has a well fig,,fined and very specific

vocabulary. There is nothing comparable to O'Connor's list

of disorders in the vocabulary ot engineering, and one might

expect indexing rules to be different when the vocabulary is

less precise.

In conclusion, there are several major objections to most

of the studies we have discussed: the particular human

indexing chosen as a standard, the question of over-

assignment, and the investigation of only a few possible

artificial rules. In each of these studies, the human

indexing which acted as the standard was not all done by the

same person or group of people. This is an important point
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becatese of the effect it has on the rules the experimenter

devises to account for 'the indexer's behavior. Let us

suppose that two indexers have rather different indexing

practices. One of them (Indexer One) assigns an index term

only if an exact match for a thesaurus phrase occurs one or

more times in the document. The other (Indexer Two) assigns

the term only -if the exact match occurs two or more eimes.

Now suppose that Indexer One indexes X percent of the sample

documents, and that Indexer Two does the remaining Y percent.

The experimenter could come up with a rule which saye "assign

+he i-eem if it occurs at least two times in the document".

This rule will Omit tep to X percent of the assignments. If

the experimenter decides the rule shoeld be "as:sign the term

if it occurs ope or more times in the document", 'then he will

be over-assigning in up to X percent of the cases. If many

indexers and many indexer assignment rules are involved, the

hypothetical assignment rule devised by.the experimenter is

very dependent upon the particular mix of people who did the

indexing.

There are two ways to deal with this problem. First, all

the documents could be indexed by the same person. The

experimenter would then be looking for a rule to explain the

behavior of a single indexer. The second possibility is to

have all the documents indexed by each of a group of people.

This leads the experimenter to an explanation of an "average"

type of indexin g. SfLnce an individual indexer is unlikely to

be following.any rule consistently, the averaging would give

an opportunity for individual variations to cancel out.

26



20

7he second major objection to most of the studies

discussed above is that they have ignored or plaved dcA,rn the

effer.lts of over-assignment. The artificial rule must J.ccount

for the non-assignment of terms as well as the assignnt of

termL. This difficulty was discussed above in connection

with the Fels and :Jacobs 'and the Montgomery and Swanson

studLes.

Third, there has been no systematic investigat:.on of a

bro&J. spectrum of possible hypothetical indexing ru. Se As

Section 2.4 demcnstra-_es, a combination rule (clue .fle AND

clu two) is very selom employed. Investigatic: of a

br7Jader range of rules would make it possible to say just how

complex an Prtificial rule must be to imitate human indexing.

Despite the assurances of an occasional devotee (Salton

(1970)), there is no clear evidence that human indexing is

machine-like". The models proposed in this thesis are

intended to investigate two general types of machine-like

rules to determine whether they do account for a large

percentage of human indexing behavior.
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2.3 Pules for Automatic Indexing

E-pothetical indexing rules have )een suggeste: for

purposes other-than imitating human indexing; much ct the

literature on automatic or mechanical Thdexing const_sts of

tests of such hypothetical rules.- Inste-e.d of survevil the

literture of automatic indexing whie'l has been re-:wed

exhaustively and competently by Stevens (1970), we wil: try
to summarize the types of rules prcosed for autc)matic

indexers.

The automatic indexing rules, mentioned in the liteure
break down naturally into four general areas; 1) syntactic
clues, 2) statistical clues, 3) textual clues and 4)

assignment rules. In this section we will characterize the

three types of clues and cite examples of each type. Section
2.4 discusses the assignment rules. We are primatily
concerned with the textual clues and the assignment rules

because they provide a basis for understanding the models

used in Chapters 3 and 4.

2.3.1 Syntactic.Clues

Syntactic analysis makes a fir.st step toward

understanding the meaning of text by unravelling the text's

grammatical structure. Syntactic clues are chosen on the

basis of knowledge of this grammatical structure. An

automatic analyzer finds the part of speech of each word in

the text as it parses the sentence. Unfortunately, this is
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not simple process. Syntactic analyzers are often quite

compl:_cated programs which can produce a number ot alternate

of a single sentence. Dealing witli two sentences is

bsyc-d the abilities of most existing programs unless the

vocabulary and grammatical structures are severely limited.

Although Harris (1959) talked of kernalization of dentences

and replacement of pronouns in 1959, only recently have there

h.-a--?,n programs which can actually perform some of these feats

(Shapiro, et.al. (1969)). In fact, artificial intelligence

eyne:71mentere c(3unt the understanding of small pOrtions of

text about calculus a major success (Simmons (1970)21) mainly

because of syntactic problems.

There have been automatic indexing experiments with

syntactic analyzers designed to search for specific types of

syntactic cluesr however. Baxendale (1958, 1962), Baxendale

and Clarke (1966) and Clarke and wall (1965) identified noun

phrases in natural language text with an accuracy of 91%.

Unfortunately, this program has never become part of an

automatic indexer. Klingbiel (1969, 1971) designed a program

to read in natural language text, locate phrases which could

serve as potential index terms, and display these phrases tc

a human indexer. The human was expected to make the final

indexing decision. This analyzer recognized just thirteen

syntactic types.

While syntactic information will no doubt be an important

automatic indexing technique in future years, for the prese--
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_t is more talked-abodt than practiced. .This clue type is

-ct included in either of the models in this thesis.

1.3.2 Statistical Clues

The statistical methods of isolating clues are really

-ethods for locating content-bearing words in natural

_anguage text. Large quantities of text must 10,1 processed

zsdally by truncation and counting - to give statistical

information about the frequency cf occurrence of text words

in the language a,s a whole. The object is to locate words

which have atypical distributions in the text.

For instance, Dendi (1965, 1967), in one of the earliest

statistical experiments dealing with text, tested a number of

statistical distributions intended to separate content-

bearing words from t17e other words. About 3.6 million wOrds

from 2600 reports of law cases were keypunched. Then a

number of statistical distributions were tested against this

text to find one which characterized the content-bearing

words.. The content-bearing 'words identified by the

distribution became the master indexing list. Every time one

of these words appeared in a document, the document was

assigned that word as an index term.

Damerau (1965) performed similar el(periments with one

Tillion words of world politics news broadcasts. The object

as the same: to find a statistical distribution which would

accurately separate content-bearing words. He found that
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non-content-bearing words (often called ',function,' words) had

a Poisson distribution through the documents since these

words tended to be randomly distributed. Later, Stone (1967)

and Stone and Rubinoff (1968) tried several modified Poisson

distributions on a 70,000-word sample taken from Compmtina

Reviews. Stone found that words with a Poisson distribution,

since they occur randomly, are non-specialty or uninformative

words. Specialty words have non-random, non-Poisson

distributions. Stone developed two Poisson formulas and

proved that one of them is analogous to Dennis" best

separating formula.

The identification of content-bearing words is a first

step in the compilation of a list of keywords. And a list of

keywords can be very useful when building a thesaurus. But

such a list does not, in itself, act as an automatic indexer.

For this reason, statistical methods of isolating clue words

are not included in either thesis model.

2.3.3 Textual Clues

Textual clues (also called 'machine-recognizable textual

clues' or, simply 'clues' in this theSis) are the most common

raw material for automatic- indexing algorithms. Textual

clues are words or phrases produced by natural language text

Or obtained from it without benefit of syntactic analysis or

statistical manipulaticns of lage quantities of text. Since

this is a definition-by-default, some examples might be

helpful.
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Many years ago Luhn (1957) suggested the use of location

as a textual clue. Words occurring in the title were

supposed to be more likely to be good descriptors than words

occurring in the body of th document. Other suggestions

have been .made tor locations of textual clues. Baxendale

(1958) thought the first and last sentences in each paragraph

were good. 0/Connor (1965) tried the first and last

paragraphs of a document. Figure 2.01 lists the various

locations or combinations of locations tried by various

experimenters and references-the journal artitle in which

each suggestion was made.

A second group of textual clues centers around a match

between the text of the document and a word list of some

sort. By far the most common type of match sought is an

exact match between the document and a word list or thesaurus

(see Figure 2.01). Fangmeyer and Lustig (1969)' and

Montgomery and Swanson (1962) accepted a partial match

between the document and the word list. Other experimenters

searched for stems of words, or utilized thesaurus cross-

references as clues.

The last major group of textual clues is based on

cOunting. Here, a count of the number of times a word is

used in a document determines whether that word is a'cl.ue or

not. Some experimenters (see Figure 2.01 again) simply take

the mot frequently used words. Others take words occurring

at least X times in a document, or those which constitute at

least X% of the document. This counting procedure is to be
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contrasted with the procedures used to obtain statistical

clues. Statistical clues are only available from large

quantities of text (on the order of a million words). The

counting procedure discussed above operates only on the

document at hand. It does, not dspend on statistical word

distributions in the language as a whole.

Each of the methods in "these three major groups of

textual clues is a way to obtain information about the

subject content of the document from its text. The two other

methods discussed in Sections 2.3.1 and 2.3.2 for obtaining

information about subject content (syntactic clues and

statistical clues) require either rather complicated

programming or large quantities of text. The textUal clues

mentioned here are by far the most numerous clue types found

in automatic indexing experiments - probably because they are

the easiest cluef.3 to obtain with present-day computers. For

this reason, they are the clues modelled in this thesis.
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2.4 Assignw?nt Rules

An automatic indexing algorithm is a combination of two

elements: the clues identified, and the assignment rules.

Given a particular pattern of clues, the assignment rule

decides whether those clues result in an index term. For

example, suppose the clue-finding procedure looks for

thesaurus words in the docement in two places: the abstract

and the title. An assignment rule might be the following:

"Assign the index term if the thesaurus word occurs once in

the title or at least .three times in the document". The

assignment rule keeps track of the locations, frequencies and

types of clues appearing in the document. When the minimum

assignment rule conditions for a particular thesaurus term

are met, that term is added to the document's index set. The

assignment rule is simply an indexing procedure operating on

textual information about the documents.

Many studies have made use of very primitive assignment

rules. The most common of these is: if any textual clue

occurs, then assign the corresponding index term.(see Figure

2.02). In some cases, several textual clue types are

involved.' For instance, Artandt (1969) looked for two

signtficant words in the same sentence. Montgomery and,

Swanson (1962) searched for at least one of several clue

types. Luhn (1957) searched for vordS in particular

locations with high frequencies. O'Connor (1965) developed

increasingly more complicated assignment rules for two index
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terms in the medical field. /n fact, his assignment rules

were different for each index term studied.

In conclusion, we have seen that a number of hypothetical

indexing rules have been proposed and tested in the pursuit

of automatic indexing algorit-tms. Unfortunately for us, the

results of these automatic indexing experiments are sometimes

not evaluated at all, are evaluated only in terms of the

total number of terms in the index set, or are compared with

the output of a single human indexer. Although none of the

experimental results are particularly useful to us in

deciding what proportion of human indexing can be accounted

for by textual clues, these studies do give us valuable

insight into hypothetical rules which could be 'used to

imitate hqman indexing.
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2.5 Clues and Assignment Rules Used in this Thesis

The clues and assignment rules modelled in this thesis

are extensions of those found in the literature (see Figures

2.01 and 2.02) with adaptations to accommodate the dOcuments

actually used. For instance, since the sample documents

indexed are short and consist of just a title and abstract,

just two locations for the clues are distinguished: title

and abstractu On the other,hand, extensive use is made of

information frOm the thesaurus for identifying clues.

Sections 2.5.1 and 2.5.2 describe and define the clues for

the regression and combinatorial models. Section 2.5.3

describes the assignment rules typified by the two models.

2.5.1 Regression Model Clue Types

2:i keeping wtth the breakdown found in the literature,

clues have been divided into three general groupings:

1 type of match (6 different types in group)

2 length of match (5 different lengths in group)

3 location of match (2 different locations in group).

One element is taken from/ each of the three groUpings to

constitute a single clue. For example, a main entry

descriptor match (group -one) of a three-word phrase (group

two) in the abstract (group three) is a single clue. There

are 6.5.2 or 60 possible clue types.

The three short lists below constitute a complete display

of each of the items in the groups. All possible clues are
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formed by taking every possible combination cf matches from

the three groups.

Tyne Lc ith Location

main entry three-word phrase title

stem two-word phrase abstract

used-for term heRder

broader term modifier 2

narrower term modifier 1

related term

(2. 0 1 )

These sixty clue types may be thought of as a sixty-place

string of numbers. The position of the number in the string

indicates the clue .type, the value of the number itself is

the frequency of occurrence of that clue -,,e. For example,

the first number in the string of numbers is the position for

three-word main entry descriptor matches in the title. If a

22' occurs in this location for a given document, there are

two three-word main entry phrase matches for the thesaurus

term in the title of the document. We call this sixty-place

string of numbers a "clue vector". There is a clue vector

for each document-term pair analyzed. These clue vectOrs

form the basis of the multiple regression model discussed in

Chapter 3.

Each of the matches is operationally defined by the

computer programs used to isolate it. A definition of what

constitutes a 'match between the document and the thesaurus
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phrase is given below. Information on the computer programs

may be found in Chapter 5.

To understand what is meant by each component of a clue

type, consider the following excerpt from a thesaurus.'

Radiation counters

BT Measuring instruments

Radiation measuring instruments

NT Beta spectrometers

RT Dosimetels

Ionization chambers

Vertical takeoff aircraft

UF convertiplanes

where BT = broader term, NT = narrower term, PT = related

term, and UF = used for.

Main entry: the thesaurus and the document word(s) match

exactly, character for character. A singular/plural

difference is counted as an exact match. Thus °counters° in

the thesaurus matches gcounter0"or *counters* exactly.

Stem match: the stem of the.thesaurus word and the stem

of the document word(s) match exactly. The stem of a word is

that part of a word to which inflectional endings are added

or in which phonetic changes are made for inflection. The

thesaurus stem *radia0 matches the document stem °radia' for

such unstemmed words as °radiation°, °radiate°, etc.

Used-For match: the UF references in the thesaurus match

either the singular or the plural form of the word(s) in the

Y'
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document. A used-for matc is counted for the thesaurus term

*vertical takeoff aircraft' if either *convertiplanes" or

Iconvertiplane* occurs in the document.

Broader term match: the BT references in the thesaurus

match either the singular or the plural form of the word(s)

in the document. A broader term match is counted tor the

thesaurus term 'radiation counters° if *measuring

instruments* or *measuring instrument° or *radiation

measuring instruments' or- *radiation measuring instrument°

occurs in the document.

Narrower term match: .the NT references in the thesaurus

match either the singular or the.plural form of the word(s)

in the document.

Ilelated term match: the PT references in the thesaurus

match either the singular of the plural form of the word(s)

in the document.

Three-word phrase: if the thesaurus term being tested is

a three-word phrase, and the words occur in the document with

no more than one intermediate *of* then a three-Nord phrase

match has occurred. A three-word phrase match for *vertical

takeoff aircraft* occurs if either *vertical takeoff

aircraft* or *takeoff of vertical aircraft' or 'vertical

takeoff of aircraft° or °aircraft vertical of takeoff*, etc.

occur in the document.

Two-word phrase match: if the thesaurus term being

tested is a two word phrase, and the words occur in the

document with no more than one intermediate 'of° then two

word phrase match has occurred.
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Header match: if the right-most word of a' multi-word

thesaurus phrase,oc,,:urs in the document, or if a thesaurus

entry of a single word occurs in- the document, then a head:

match is counted. If either °dosimeters* (a thesau7:us entry

of a single word) or *chambers" (the right-most .word of

'Ionization chambers') occurs in the document, a header match

is counted. If a thesaurus term of the form °card punches

(data processing)/ ocurs, the parenthesized expression is

ignored.. In this case *punches' is the right-most word of a

two-word phrase and is therefore tha header.

Modifier 2 match: if the second word of a three-word

thesaurus phrase, or the left-most word of a tWo-word

thesaurus phrase occurs in the document, then a modifier 2

match is counted. A modifier match tor *vertical takeoff

aircraft" is counted if *takecff* occurs in the document; a

modifier 2 match fcf:.. *radiation counters* is counted if

1,radiation* occurs in the document.

modifier 1 match: if the first word of a three-word

thesaurus phrase occurs in the document, then a modifier

match is counted. The word *vertical* is a modifier 1 match

for 'vertical takeoff aircraft*:.

Title match: if the word(s), being matched occnr in the

title, then a title match has occurred.

Abstract match: if the word(s) being matched occur in

the abstract, then an abstraCt match has occurred.

The textual clues occurring in the document may be

counted more than once. If both *vertical takeoff aircraft*

and 2aircraft° occur in the abstract, this counts as one

40
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exact three-word phrase match in the abst:_ac ud o exact

:.der matches in the abstract. This method cf counting

assures that each Olue is counted indepc 'rl1y of all

others.

2.5.2 Combinatorial Model Clue Types

The regression model in Chapter 3 and the combinatorial

model in Chapter 4 have been tested with the same clue types.

However, the additive properties of the regression model and

the Boolean properties of .the combinatorial model require

somewhat different reporting schemes for these clues. The

regression model simply records the count of the number cf

times a clue appears in the document. The combinatorial

model uses Boolean comleinationse sc the numbers in the clue

vector must be binary (either one or zero) . This is

accomplished by translating the single-cell count of the

regression model into a binary record. -There is a zero in

the binary record if there is a zero in the corresponding

place in the regression model record. There is a one in the

binary record if there is a number greater than zero in the

corresponding position of the regression model. The binary

ve,-.-tor simply records which clue type's. are present in the

document. A zero value in a binary clue cell means the clue

type did nct occur in the document;"a one means that one

more clues of that type occurred in the document.

or

This particular pattern for the binary clue vector was

chosen for two practical reasons: 1) tor the size of
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documents used in the sample, there is little necessity to

record broad frequency ranges since high frequency clues are

not common and 2) additional clue, types increase

computational time considerably. In theory. there is no limit

to the occurrence frequencies which cculd be represented by a

binary record, however. As with the regression model, there

is cne clue vector for each document-term pair analyzed.

The following three short lists summarize the clues used

for the combinatorial model:

Ty2e. Length Location

main entry three-word phrase title

stem two-word phrase abstract

used-for term header

broader term modifier 2

narrower term modifier 1

related term

These lists are identical to those in Equation 2.01 except

for the the modificaticn of the cpti.ons in the location

group.

As with the regression model, -all possible clues are

formed by taking every possIble combination of matches from

the three groups. There are a total of 6.5.2 or 60 possible

clues.

4 2
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2.5.3 Assignment Rules Used in the Models

The models in Chapters 3 and 4 are intended to test a

nunber of possible assignment rules in a systenatic fashieJn.

Each model tests a different class of assignment rues

although in a certain number of special cases the two kinds

of assignment rules are mathematically equivalent.

The class of assignment rules tested. by the combinatorial

model are a particular set of Boolean equations formed from

combinations of the sixty binary clues. These Boolean

equations are of the form (clue-type-1 AND clue-type-2) OR

(clue-type-3) OR (clue-type-4 AND clue-type-5) . Translated

into a model of human indexing, the above 'equation would

read: if clue-type-1 AND clue-type-2 OR if clue-type-3 OR if

clue-type-4 AND clue-type-5 are present in the document, then

assign the thesaurus term. These equations are covered in

more detail in Chaptcir 4.

The class of assignment rules tested by the multiple

linear regression model is of a different form: Y = A B 1

(number of clue-type-l-occurrences) + B2 (number of clife-

type-2 occurrences)

occurrences).

En (number of clue-type-n

Translated into 111^A°1 ^F hi,mAn indexing,

this equation would read: To a constant, A, aald the

coefficient Bi multiplied by the number of times clue-typc-1

occurred; then add the coefficient D2 multiplied by the

number of times clue-type-2 occurred; etc. The sum Y is the

percentage of indexers assigning the term. The multiple
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linear regression model looks for additive combinations of

the textual clues. Each clue is weighted arithmetically by

the coefficients so the total score for a particular term is

a sum of the fractions of all of the clues considered. (See

Section 3.2 for a detailed discussion of this weighting.)

The object of the regression calculations is to find the

"best" values for the constant and coefficients. Chapter 3

discusses the regression in more detail.

As mentioned above, in a. certain number of 'special cases,

the Boolean combinatorial model and the multiple linear

regression model are equivalent. A . branch of switching

theory, called "threshold logic", deals' with ' this

equivalency. Threshold logic (Lewis and Coates (1967)) is

concerned with converting binary circuits (or Boolean

equations) into threshold circuits (or a sequence of-linear

equations) . A number of methods are available .for

"realizing" (converting from Boolean to) a threshold lcvlc

element. All Boolean equations can be realized by one or

more threShold 1°9-1-2 elements. However, only a few Boolean

equations may be converted to a'sipale linear equation. When

just a single threshold. element is needed, the Boolean

eluation is said to be "linear_ly separable". If there are

two Boolean variables (in our case a Boolean variable is a

clue type), then there are 16 distinCt Boolean functions of

which 14 are linearily separable. If there Are three Boolean

variables, then there are 256 distinct functions of which 104

are Ainearily separable. When the number of Boolean

variables is equal to or greater than 4, the perc,:mtage of
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linearily separable functions decreases rapidly (Torng (1965)

20). The equivalency between the best Boolean and the best

regression models is discussed in Section 6.2.3.

Since the regression model does not permit testing of

many Boolean selection rules because of the low density of

linearily separable functions, a Boolean combinatorial model

is also desirable. In this thesis, one particular group of

Boolean assignment rules is tested exhaustively to uncover

the best set of Boolean equations for the sample documents.

Both models assume that the same indexing procedure or

assignment rule applies to all terms in the thesaurus. This

is consistent with the approach taken by all automatic

indexing studies with the exception of O'Connor who devised a

different rule for each thesaurus term. Both models are, of

course, dependent upon the particular clue types chosen by

the experimenter. Neither model can disclose the importance

of clue types not included in the model.
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2.6 Subject Experts versus Librarians

If indexers do little more than pick good words out of

the document, then a high level of subject competence may not

be necessary. On the other hand, if J.,Idexers make

intellectual decisions requiring knowledge about technical

subcts, potential users of the system, etc., then subject

expertise is an obvious prerequisite.

Although comparative studies 'have been made of author-

indexers versus professional indexers, no comparison has been

made of the dependence of the two groups on the textual clues

in the document. One would expect that scientist-indexers

would depend less on the actual words used in the documents

because of their greater understanding of the subject matter.

Librarian-indexers would not have the benefit of subject

familiarity and would, therefore, be more dependent upon .the

words actually used in the document when indexing.

To test this hypothesis, two groups of indexers have been

used as subjects for this study'. The first group consisted

of six librarian-indexers. Each of the librarians had an

M.L.S. degree from an accredited school. Each had Spent some

time either indexing or cataloging in a special library, in

the field of engineering or science; Each had worked on a

reference 'desk answering questions from patrons of the same

kind of library. Each was Laminar with the standard

scientific and engineerj,ng abstracting journals.



140

The second group consisted at six scientist-indexers.

Each of these scientists or engineers had at least an

undergraduate degree in engineering or the hard science:70 In

some cases, the scientist hael. an M.S. or a PhD. Each was

earning a living as a scientist or engineer at the time of

the study. The documents used for the experiment were in the

field of instrumentation. This topic was chosen because

scientists and engineers familiar with that subject were

available to do the indexing.
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Figure 2.01 Table of Textual Clues

A. Besearchers using location as a clue:

title, abstract, headings, text, references, figures
Edmundson and Wyllys (1961)

first and last paragraphs
Luhn (1957) 315
0°Conwor (1965) 499

title and first paragraph
Swanson (1963)

title, abstract, full text,
Luhn (1959)

first and last sentences.in Faragraph
Baxendale (1958)

B. Researchers using type of match as a clue:

thesaurus or word list matches
Artandi (19647 1969)
Bloomfield (1966)
Fangenmever and Lustig (1969)
Harris (195-)
luhn (1959)
Meyer-Uhlenried and Lustig (1963)
Montgomery and Swanson (1962)
O'Connor (1965)
Salton (168) 26
Slamecka and Zunde (19,63)
Swanson (1960)
!!_unde (1965 !

part a thesaurus phrase
Fangenmeyer and Lustig (1969)
Montgomery and Swanson (1962)

cros-references from the thesaurus
Fangenmeyer and Lustig (1969)

stem matches
Fangenmeyer and Lustig (1969)
Luhn (1953)
Salton (1968) 30-3?
Zunde (1965)

multi-part clue expression with variable substitutions
0"Connor (1965)

C. Researchers using count and frequency criteria as clues:

absolute frequency counts
Baxendale (1958)
Jones, Giuliano and Curtice (1970)
Luhn (1958)

relative frdquency counts
Artandi (1969) 218
O'Connor (1965) 499, 508

most frequent words
Luhn (1957, 1958)

most frequent word pairs
Baxendale (1958)
Edmundson and Wyllys (1961)



Figure 2.02 Table of Assignment Pules

a match with the thesaurus or with a word list
Artandi (1969)
Bloomfield (1966)
Pangmeyer and Lustig (1969)
Harris (1959)
aones, Giuliano, Curtice (1970),
Montgomery and Swanson (1962)
Salton (1968) 25-48
Zunde (1965)

most frequent words in first and last sentence
of each paragraph
Baxendale (1958)

no more than X non-significant words opr--ating
significant words
O'Connor (1965)

two significant words in the same sentence
Artandi (1969) 219

two signiticant words withlY1 twc paragraphs
Luhn (1957)

at least X occurrences of thesaurus words per
Y words of text
O'Connor (1965)

title, heading, resume and frequency
tuhn (1957)
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Chapter Three

THE MULTIPLE LINEAR

REGRESSION MODEL
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3. The Multiple Linear Regression Model

2 1 Desirable Characteristics of an Indexing Model

An ideal model of textually-clued indexing would have

several properties. First, it should answer the question

"H-ow strong is the relationship between the clues in a

document and the index terms assigned to that document?" The

answer to this question would tell us just how much of the

indexing can be accounted for on the basis of the clues.

secondly, it should be possible to make some

statistically valid statements about the entire population of

indexers and documents with the information obtained from thfa

single sample. We would like to be aFi_e to infer that the

relationship found in the sample also holds for the

population as a whole.

Thirdly, the model should be able to be used

predictively. It should say whether a particular index term

would be assigned to an arbttrarily chosen document This

prediction might not be just a yes/no decision, but could

also be, say, a prediction of the percentage of indexers who

would assign the term to the document. If it turned out that

there were only a small statistical relationship between the

clues and the indexing assignments, then this predictive

property would not be of much practical impoz-tance since the

model could not function in place of the real indexers. If,



however, there were a strong statistical relationship, a

predictive model could be substituted tor the indexers.

Because of the capability of giving strong answers to

these requirements', multiple linear regression has been

chosen as our first indexing model. Since this -odel assumes

a linear relationship between the index terms asSigned and

the clues, a second model has also been built. This model,

callel the combinatorial model, does not assume linearity.

Tile multiple linear regression model will be discussed in

this chapter and the combinatoria: model in the next.
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3.2 The Mathematics of Regression

This section gives a cursory explanation o multiple

linear regression. Although many statistics i_-xts treat the

subject, most discussions are difficult to read. The

following books may be consulted for more detailed

discussions: Hays ((1963) 490-577), Ferber ((1949) 3(46-379),

Ostle ((1963) 159-243), and Draper and Smith (1966).

Regression is a common statistical technique used to show

the linear relationships among two or more variables. For

instance, we would like to know whether the index terms

assigned to a document are related to the occurrence of

textual clues in the document. In this case, the dependent

variabl is the percentage of- indexers . who assign a given

index term and the independent variables are the various

types of machine-recognizable textual clues in the document.

Assume for the moment that several indexers individually

choose index terms from a thesaurus for the same document.

In effect, the indexers are vcting for the set of most

popular index terms from among the potential thesaurus

candidate terms. Some index terms will. receive many votes,

others fewer, most will receive no votes at all. Each of the

potential thesaurus candilate -erms considered by the indexer

Loup is a single experimental event. This experimental

event consis4ts of the 0+1) numbers:



1 number of times clue type 1 occurred in document,

2 number of times clue type 2 cccurred in document,

number of times clue type n occurred in document,

n+1 percentage of indexer group voting for term.

For example, let us suppose the document indexed has the word

compute.cs in it twice and that the index term now being

considered is ocomputers9. If clue type 7 is the exact match

between the index term 'and a word in the document, then clue

type 7 occurs twice In this document; therefore the number in

the seventh place in the (n+1)-tuple is a 2. The numbers 1

through n form the clue vector discussed in Section 2.5.1.

The clu types used in the model are also listed in that

section.

Each experimental event is represented numerically by -n

(n+1)-tuple where n is the number of known dc nt

characteristics. In this case, n is the number of types of

machine-recognizable textual clues tested by the experiment.

The remaining point in the (n+1)-tuple is the dependent

variable or the percentage pf indexers assigning that term to

the document.

As each Gf the potential thesaurus candidate terms is

considered in turn, a new (n+1)-tuple is produced to

represent the differing percentages cf indexers who assign
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the term and the different quantity of textual clues in the

document for that term. If all indexers index the same

documents with tha same thc-saurus, then there villa

N = (documents indexed) c (size of thesaurus) (3.01)

experimental events or (n+1)-tuples.

Each of these experimental observations c be

represented in (n+1)-space as a s'ngle point. The object of

the multiple linear regression is tc fjt the best straight

line through these points. This line is fitted so that the

summed squared deviations of the points from the line are

minimized.

The eqUation of the' resulting

classic one:

Y = A + B1X1+ B2X2+ BnIn

straight line is the

(3.02)

where A is a constant, the X*s arse the n clue types, and Y is

the proportion of indexers assigning the term.

The Bos can be thought of as weights for each clue type

in the rearession equation. Equation 3002 can be re-written

as:
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Y = A + Bi 0 (clue type 1)

+ 82 e (clue type 2)

+

0 (clue type n).

Here the B6s weight the clue types so :_Lat the sum of each of

the terms in the equation totals to Y.

Notice the additive nature of-the effe,...ts of the various

r7lue types. This model says thei an indexing decision is

based on a weighted sum of all clue types, each clue type

adding its evidence to the total evidence available for that

index- term. This assumption of linearity is basic to the

regression model. It allows us to find the single best-

fitting straight line for the data..

The use of multiple liliear regression requires two

assumptions about the data. These assumptions are not needed

to celculate the correlation coefficient, but are required to

say how good the correlation coefficient is as an estimator

of the true population coefficient and to set confidence

intervals. The first of these assumptions, normality, says

that for a given X value, the Y values are distributed

normally about a mean. When only a single X value is

involved, or the values of X's can be controlled by the

experimenter, the data can bc inspected to see whether the

assumption of normality is justified. Since our model ha3

many Xve whos. 1.ues are not under experimental control, it

is very difficult to determine how the Y values are

,Jistributed. I, turns out, however, that deviations from
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normality do not have a serious influence on the regression

model (Scheffe (1959) 350,360-368). Regression is not very

sensitive to non-normality.

However, the upper and lower boll ds set on the

ccrrelation coefficient are very dependent upon

homoscedasticity. The homoscedasticity of a variable is the

degree to which its variance is constant; that is, the degree

to which the variance of Y given X is the same for all X.

Unequal variances play havoc with the setting of confidence

intervals. One way to deal with non-homoscedasticity is to

squeeze out the effect of unequal variances with

transformations of the X values. A number of transformations

can be made (Dixon (1970) 17-19).

One way to examine the data for unequal variance is to

plot the residuals cf the regression for each independent

variable against the dependent variable. A residual is the

difference between the Y actually measured in the experiment

and the Y value calculated during the regression. The

calculated Y value is the appropriate point on the best-fit

line drawn by the regression through all the data points. If

the residuals for a given variable show a marked tendency to

scatter in a particular pattern, then tre'nsformations of the

data are probably required to assure homoscedasticity.

The regression program Used for calcelations in this thesis

(see Section 3.6) could produce the required residual ,plots

on demand. Examination of the plots of residuals for the,
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major independent variables showed no distinct ti.?ndency in

the scatter. Although there was a tendency tor values to

cluster at the low end of the x-axis where the independent

variables (clue types) had values,of 1 or 2, this effect was

primarily due to the sparseness of ',high-valued observations.

This was doie to the fact that clues had a tendency to occur

once, cr twice, but seldom six or eight times in a single

document. Of coarse, this meant that more data was available

on the low end of the scale. The higher values seemea to be

randomly scattered thoughout their ranges. For this reason,

transformations of the original data were not necessiv.ry to

preserve homoscedasticity.
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3.3 The Correlation Coefficient

The correlation coefficient, IR, is a measure of the

.strength of the linear relationship between the index terms

assigned and the textual clues in the documents.

If the distributions of X and Y are similar, then E may

take on any value from an extreme low value of -1 to an

extreme high value of +1 (Hays (1963) 510) . When the

distributions of X and Y are very dissimilar, these extremes

can shrink considerably (see Carroll (1961)). We would

expect our X and Y distributions to be very similar. Most of

the values of these two variables will be zero; a middling

number of observations will have low values (one indexer

assigns, or a clue occurs once in a.document); fewer will

have mid-range values (sevorai indexers assign the same term,

the same clue occurs several times) ; very few observations

will have high values (almost all indexers agree to assign, a

particular clue occm:s many times in the documnent). An

inspection of Figures 5.07 and 5.09 bears out this

expectation. The indexers in Figure 5.07 have a tendency to

Eake unique assignments; terms assigned by many inde'xers

occur infrequentiy. The same distribution is evident in the

totals of Figure 5.09. A particular clue type is usually a

unique occurrance in a document. Since the distributions of

X and Y in our data are very similar, P has a -1 to +1 range.

A +1 value of R means that the X and Y variables are

perfectly positively correlated. In other words, Y varies in
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the same way d in the same direction as X because the

possible valmes of X and Y lie on a straight line with a

positive slope. If R has a value of -1, then X and Y are

perfectly negatively correlated. This means that possible

values of X and Y lie on a straight line with a negative

slope. Between these two extremes, R can be zero. This

means that X and Y are uncorrelated or linearly unassociated

with each other. Two completely random pEenomena exhibit a

correlation coefficient of zero.

A correlation of +1, however, does not mean that there is

a causal relationship between X and Y, nor does a correlation

of zero mean that X and Y are statistically independent. We

are simply obc-erving that X and Y vary in a particular

fashion, we are not saying why this variation occurs.

It should be noted that it is always possible to make' R

equal to 1 by increasing the number of independent variables

to equal the number of observations made. As long as the

number of variables (clue types) remains low in comparison to

the number of observations, there is no danger of forcing the

value of P to one. Thus, our ra.cio of 61 clue types to 6379

observations will not prejudice the value of R.

Recall from Section 3.2 that we have been using summed

scuared deviations as a measure of the best fit regression

line. Again using summed squared deviations, the total

variance exhibited by the data is equal to the summed squared

deviations of the actual Yos from the average Y. This
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assumes that we merely averaged all the data. In tact,

however, we are positing a limea relationship between X and

Y, so the deviations we have not been able to explain by the

regression equation ate the summed squared deviations of the

actual Y's from the Y's predicted by the regression equation.

The explained variance is then the summed square of the

difference between the Y's computed by the regression and the

average Y. If we divide the explained variance by the total

variance, then we have a measure of the amount of variance

accounted for by the regression, or a measure of the

goodaessH of the rearession. This statistic is:

p2 = explained variance / total variance (3.03)

and it is expressed as a percentage. In fact, it is the

percentage of variance accounted for by the regression. Note

that when P is either +1 or -1, P2 is also one and that when

R is almost zero, P2 is also lost zero.

For our purposes, then, is the percentage of indexing

accounted 1:or by the regress an. As far as the regression

model is concerned, it is the percentage of indexing behavior

which can be accounted for by the use of textual clues.

We would like to sav how good the correlation coefficient

is as an estimator of the true correlation coefficient. Any

value of R may be transformed to a new variable, Z, in the

following way see Edwards (1967) 248-250 or Bays (1963) 530-

531).

61
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Z (1 + R) - ln (1 - R))/2. (3.014)

Fisher (1921) has shown that the distribution of Z is very

close to normal with a mean of zeto and a standard deviation

of 1 and that Z is independent of the sample size The

standard error of Z isz

S = 1//(N - n - 1). (3.05)

where 14 is the number of exr,,,rimentl evens and n the number

of variables. The correlation coefficient for the entire

population therefore lies between an upper bound of (Z + S

K) and a lower bound of (Z S K) where K is the percentage

cut-off point on- the normal curve (for a 99% confidence

interval, K = 2.58). These upper and lower bounds on Z may

be transformed back. into R values so that a confidence

interval may be set around the correlation coefficient.

We will be comparing the correlation coefficients

obtained from different experimental sub-samples and would

lihe to test the significance of the difference between two

correlation coefficients. The Z transformation also permits

this kind of test (Edwards (1967) 250-252),
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3.4 Relative Importance of Clues

The regression program discussed in Section 3.,6 adds

variables to the regression equation one at a time, giving

information\ after each addition about the improvement to R2

caused by each variable. It will therefore tell us how much

each variable contributes to the final value of R.

It is the improvement in R2 effected by a clue as it

enters the regression equation which indicates its impertance

in accounting for the inde'lting (see Section 3.3). R2

measures the sum of the direct and indirect effects of each

variable. A full discussion of the relative importance of

clue types in the best regression equation will be found in

Section 6.3,
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3.5 Prediction with the Regression Model

After the line described by Equation 3.02 has been

determinea for the sample, the values obtained foe the B

coefficients can be used to .predict values of Y tov pew

documents. Since the B coefficients describe a line which is

the closest fit for the experimental points, this line is the

best available predictor for new dccuments.

Let us asSUME we wish to index a new document with the

prediction function of our regression equation. For each

thesaurus descriptor to be considered by the model there will

be a set of X values, n per descriptor. The B coefficients

have already been calculated from the sample documents. To

estimate the percentage of indexers who will assign the first

descriptor, the appropriate B and I values are multiplied

together and the terms summed to get the value of Y.

The arithmetic is simple enough; logic subjects the

process to some restricttons, however. First, it would

obviously not be profitable to use the equation if the

correlation coefficient itself ts.not high. If only a small

part of indexer behavior can be accounted for by the textual

clues, then it doesnit make much sense to try to use the'

clues as a substitute for human indexing.

Secondly, even it the average P is high, there may be a

group.of documents or terms for which the P is quite low.

Thus it is important to knew just how well the equation
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predicts assignment for each of the samplo documents. If the

predicted Y values vary w:.1diy from the actual Y values for

the documents in the sample, the use of the regression

eguatien for prediction is not reasonable.

Third, we must not forget that there may well be some

uncontrollable variables or some peculiar characteristics of

the sample document set or indexers which influence the way

clues-are used. It would not be fair to generalize, for

example, from a single sample of documents about instruments

and instrumentation to all documents in any technical field.

Fourth, it is quite possible that the predicted value of

Y may not fit our practical notions of what- makes sense. The

values of Y for the sample lie betueen zero and one (1 Y

0) because they represent the proportion of indexers

assigning the.term. Since proportions may not be negative or

greater than one, negative values of Y and values of Y

greater than one cannot occur. It.is possible that when the

regressioa equation is used on new documents, some particular

combination of X's will make the predicted value of Y for the

new document lie outside the zero to one common-sense limits.

Statistically, there is nothing wrong with a predicted Y < 0

or Y > 1. If this occurs, we simply correct a Y < 0 to a

zero and a Y > 1 to a one.
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3.6 Computer Program for Multiple Lj_aear Regression

The regression calculations were done with a stepwise

multiple regression program, BMDO2R, available from the

University of Califorria at Los Angeles, Health Sciences

Computing Facility. This program calculates a series of

multiple linear regression equations. The program searches

for the independent variable (the clue type) with the highest

correlation with the dependent variable (percentage of

indexers assigning) . The regression equation is then

calculated. The independent variable with the next-highest

correlation with those already in the equation is then chosen

and the regression equation recalculated. Each new equation

adds one new variable to the calculaticns. Draper and Smith

((1966) 163-195) may be consulted for a discussion of various

computational procedures for regressions including stepwise

regression.

After each variable is added to the equation, the program

prints the multiple correlation coefficient F. the coef-

ficient of multiple determinaticn P2, the standard error of

estimate, an analysis of variance table, the regression

coefficient, the value of F and the standard error for each

variable in the equation, and other useful statistical

information. Scatter plots of the residuals of each

independent variable against the dependent variable are also

available. The method for obtaining this stepwise

information, not ordinarily available, was suggested by

Efrovmson (1960). The proaram will accept a maximum of 80
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variables and 9999 experimental events or casen. Complete

documentation of the program may be found in'Dixon ((1970)

233-257).

The regre:Dsion program is written in Portran IV (H level)

and uses Assembly language subroutines. A regression run for

about 6400 experimental events and 61 variables requires

about an hour of cpu time and from 3 to 12 hours elapsed time

on an IBM 360/65. Confidence intervals were calculated with

an interactive mathematical -system called APL/360.
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Chapter Four

THE COMBINATORIAL MCDEL

C8
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4. The Combinatorial Model

4.1 Reasons for the Combinatorial Model

The combinatorial model is intended to cover exhaustively

e. class of non-linear assignment rules of the type discussed

in Section '295.3. This model does not assume a linear

relationship nor does it make an assumption of normality,

except in a Central Limit sense.
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4.2 Types of Indexer-Model Agreement

Let us assume we have a black box model of indexer

behavior. If this model is fed the textual clues from a

document and a term from the thesaurus, it replies with a

yes/no answer. Let us also assume we have a human indexer.

If this indexer is given an index term from the thesaurus aril

is asked_ whether that term should be assigned to a document,

he, too, can give a yes/no answer.

This leads to four types or cases of indexer-model

agreement for the assignment of a particular index term to a

particular document:

case 1) neither indexer nor model asigns term,

case 2) both indexer and model assign term,

case 3) indexer assigns term, model does not,

case 4) model assigns term, indexer does not.

If the model always agrees with the indexer (case 1 and case

2 only), then it w:111 be a perfect predictor the human.

The greater the number of decisi 3 and case 4

type, the worse the model is as a.predictor of.the human.

Assume, for the moment, that we wish to test the ability

of a single textual clue to predict a human indexer's

performance. Further, assume that each sample document has

been tested for the presence or absence of this clue tor each

of five possible thesaurus tsrms and that the human has also



registered his yes/no decision. The results of this test can

be summarized in the following way:

E1119.

document and term Rresent?

document 1 term 1 no

document 1 term 2 yes

document 1 term 3 yes

document 1 term 4 no

document 1 term 5 no

document 2 term 1 no

document 2 term 2 no

document 2 term 3 no

document 2 term 4 no

document 2 term 5 yes

indexer case

decision type

no case 1

yes case 2

no case 4

yes case 3

no case 1

no case 1

no case 1

no case 1

no case 1

yes case 2

We can summarize this example as:

c se 1 case 2 case 3 case 4

document 1 1 1 1

document 2 4 1 0 0

The case 1 thrugh 4 tota" , tor each document indicate how

accurately tile model predicts the performance of the indexer

based on a single textual clue. If the model agrees with the

indexer all of the time, only case 1 and case 2 exist (as

document 2 illustrates). If the model is less successful,

then 6ase 3 and case 4 conditions may also exist (as document

1 illustrates).



This example has a thesaurus of 5 terms. An increase in

thesaurus size almost necessarily increases the number of

case 1 occurrences (neither the mode/ nor the indexer

assigns) since the index set for a document is not a function

of the thesaurus size and seldom contains more than five or

ten terms. In a larger thesaurus, the overwhelming majority

of case 1*s completely swamp out the other cases. Such a

preponderance of agreement leads to an arithmetically

impressive model, but since the case 1 agreements carry

almost no information and disguise the occurrences of the

rest of.the cases, they must be dropped from the model.

For document 1, then, the model correctly predicted 1 out

of 3 non-trivial asignments (that is, non-case I as-

signments) and thus accounted tor 33% of the indexer's

performance with a single textual clue. For document 2, the

model predicted 1 out of I non-trivial assignments,

accounting for 100% of the indexer's performance. The non-

trivial assignments are a measure of how well the model

matches the indexer. The figure-of-merit for non-trivial

_ assignments is calculated as:

Figure-of-merit =

(case 2)/(case 2 + case 3 + case 4). (4.01)

This figure-Of-merit is often called a "precision ratio" and

is commonly used in document systems to quantify the succees

of the system in answering requests. Becker and Hayes

((1963) 370-372) point out that this measure "attaches no
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weight at all to agreement in Ols and is therefore onlY

snitable where the proportion of 1°s to O's Is low. It

the Most obvious defini4-.ion in those cases where, at any rate

in Ptinciple, the columns are indefinitely long but the

riumb%r of l's in each is fixed or (statistically) limitedly

(Page 371). The O's of Becker and Hayes are our case 1z

thei°: 11,e- are our cases 2 through 4 Since our thesaurus /5

very large in comparison to the number of terms in a single

dacakentos index set, our situation is an appropriate one i4

which to use Equation

Although this measure is an appropriate one for us, there

i thirtg in the combinatorial model preventing the use of 4

different figuie-of-merit. In fact, a second figure-of-meriA

ertiployed in Sectioll 6.2 foi: the comparison of the Boolea4

comPlnatorial model and the regression model. This secoild

figate-ot-merit includes case 11s:

Fraction of all predictions modelled =

(case 1 + case 2) / (all caseNs)

The following papers may be consulted for more extensive

discU5sions of measures of nearness or coefficients

association: Kuhns (1965), Jones and Curtice (1967).

ot

Ile have calculated the success of the single-clue model

in ptedic*ing a single indexerls behavior for two document

The calculation can be repeated for any number of documentO.

We Could then report on the average success of the single.
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clue model in predicting that particillar indfteres behavior

by averaging the scores obtained for each of the individual

documents.

We could also obtain this average figure-of-merit for

each of a group of ilzdexers. We could then average the

averages to obtain an over-all figure of merit to summarize

the success of the single-clue model in predicting group

indexing behavior.

Similar calculations could be made for any other clue to

be used in the model. We could then compare the over-all

figure of merit for each of these clue types to say which

ones did a better job of predicting human indexing behavior.
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4.3 Boolean Combinations of Clues

The Boolean combinations covered in this section are

intended to test a group of textual clues and a class of

selection rules in an exhaustive fashion. Obviously, other

combinatorial rules can be imagined and tried out, and other

types of. textual clues could also be investigated. If this

first, exhaustive trial is successful, additional refinements

might be worthwhile.

We will be using two types of Boolean operators to

represent two types of indexing behavior. If the indexer

behaves as if both of two clue types are required to motivate

assignment, then AND behavior is displayed. For example,

suppose we consider the thesaurus term *radiation

Suppose an indexer assigns the term only if the woLl

* radiation* and the word *counters* are both present (but not

necemsarily contiguous) in the document. The indexer is

saying *radiation; AND *counters* lead to the assignment of

* radiation counters'. This is AND behavior. Of course, AND

behavior may combine more than two clue types in a single

expression.

If the indexer behaves as if either of two clues could

motivate him, then he is exhibiting OR behavior. For

example, suppose tte thesaurus term is 'vertical takeoff

aircraft* and the indexer assigns the term whenever either

the term itself or a used-for reference, *convertiplanes*, or

both occurs in the document. Either *vertical takenc.e
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aircraft' OR convertiplanes' leads to the assignment of

'vertical takeoff aircraft'. This is OR behavior. OR

behavior may also combine more than two clue types in a

single ORed expression.

The exhaustive Boolean combination proceeds in the

following manner. First, each single-c]ue type is tested.

Each of the documents in the sample is tested for the

presence of each clue type for.each term in the thesaurus.

The presene or absence of a clue type for a thesaurus term

is recorded in a ves/no indicator. Then, as discussed in the

previous section, each indexer's behavior is compared against

the single-clue model and the results summarized by the

average figure-of-merit discussed there. The individual

indexer figure-of-merit for a particular clue type is

averaged to yield an over-all figure-of-merit for each single

clue. This information is saved for later use in the model.

Next, the yes/no indicators for every pair of clues are

ANDed together. This preduces a new yes/no indicator for the

presence or absence of that ANDed pair of clue types for each

thesaurus term. Each indexer's behavior is compared against

the two-clue-ANDed-model and the results summarized by an

average figure-of-merit. The individualexer performance

figures, for a particular clue type are averaged to yield an

over-all figure-of-merit for each pair of ANDed clues. This

information is also retained fcr later use in he

combinatorial model.



70

Next, the procedures described above for use on all

single clues and all pairs of clues are repeated for all

triplets and quadruplets of clues and the information saved

for later use. Four was chosen as a maximum number for this

ANDing step because it appeared to be well beyond the

complexity humans might use in clue selection.

One would expect that much ANDing of single clues would

eventually produce a yes/no indicator consisting of nothing

but nots or zeros. These clue combinations cannot help in

the modelling since there are no terms which both the indexer

and the model agree to assign (that is, there are no case

2vs). These unfruitful clue combinations 'are dropped from

further consideration.

At this stage in the procedure, we have produced and

saved all possible ANDed combinations of single, double etc.

clues which might have scme value later on in the model. In

order to hav4 some value, the combinations must have shown

evidence of at least one thesaurus.term for one document for

which the ANDed clue combination correctly predicted that the

indexer would assign the term.

The next step is to test all possible ORed combinations

of the clues from the AND step. Each of the ANDed clues

be ORed with all the other ANDed clues. Atte-A.- each trial

ORing takes place, the over:-all figure-cf-merit is calculated

for the new ORed combination under test. After pairs of



71

ANDed clues have been ORed together, triplets of ANDed clues

are ORed, then quadruplets, etc.

One would expect that much ORing of the ANDed clues would

also eventually produce lower nvRr-all figureu-of-merit since

the incidence of indexer-model agreement (that is, case 2, as

discussed in the previous section) can only increase to a

maximum of five or ten for each document, while the incidence

of indexer model disagreement (that is, case 3 ahd case 4 as

discussed in the previous section) could increase

considerably beyond this. If OBinj produces new trial clue

combinations with a decreased over-all figure of merit,

further ORing of these clues is terminated.

The end result of this sequence of ANDing atd ORing is a

group of equation:, of the following form':

(C1) OR (C2 AND C3) OR (C4 Alit C5 AND C6) OR ,.. (4.03)

where Ci through C6 are arbitrary clue types. Each ANDed

element in the equation may be composed of a single clue, or

pairs, triplets or quadruplets of clues ANDed together. Any

number of ANDed elements may be combined with OR operatore.

Hence the equations, and each term within them, may he

variable.

Each of these Boolean equations is associated with an

over-all figure-of-merit which summarizes how well that

particular equation predicts the average performance of the
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group of indexers. Because of the sequence of AVDing and

()Ring operations, these remaining Poolean equations are

guaranteed to have the highest fig,.ii7e-of-merit. This is

therefore the set of equations which most accurately predicts

how the indexers behaved on the average. Tt is the best set

of models of human indexing behavior which we can build with

the specified procedure.

Ideally, we wish to obtain the simplest model which will

predict accurately how humans index. We are therefore

looking for the equation with the highest figure-of-merit and

with the least number of ANDed and OPed terms.
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4.4 Stattstical Tests of the Ccmbinatcrial Model

Statistical tests of the significance of the

combinatorial model are much less complex than those for the

regression model. The over-all figure-of-merit for the

highest ranking Boolean equation quantifies the amount of

human indexing accounted for by the textual clues. The

figure-of-merit for each of the- equations is simply an

average of all indexer behavior, over all documents, for all

thesaurus terms in the sample. -To be able to make statements

about the entire population of indexers, documents and

thesaurus terms, from this sample, we use the Central Limit

Theorem (Hays (1963) 238-244) to obtain a normally

distributed population. For the Boolean equation '-with the

highest average figure-of-merit, we know tow well the

equation predicts the average indexing for each document-term

pair. If rand:;m scores chosen from this large' sample are

averaged a normal distribution is produced. From this

normal distribution the standard deviation of the sample may

be calculated. The confidence interval for whatever

confidence coefficient we choose.can then be obtained.

One of the major points of interest is a comparison of

the scientist-Indexers against the librarian-indexers to

determine -which group is most accurately represented by the

textual clue model. If the figures-of-merit are calculated

for the indexing of the scientist-indexer group alone, the

Central Limit Theorem provides standard deviations just as it
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did above for the total indexer group. The calculations can

be repeated for the librarian-indexer group.

The relative im?ortance of the textual clues is

immediately available from an observation of the equations
themselves. It is of interest to know which clues are most

frequently used in the ANDed and OPed equations.

The predictive properties of the Boolean equations are

straightforward. A new document is tested for the existence
of each of the clue types. These binary valves are plugged

into the Boolean equation. The decision on the assignment of
each thesaurus term is "yes,' if the Boolean equation returns

a value of one, and nou if a zero is obtained.

As with the regression model, we must use caution when

applying the model predictively. The Boolean equation is not

a universal automatic indexer just because it may account for

the human indexing behavior on a sample of documents. There
might well be special circumstances affecting our group of

documents and indexers which render the model inaccurate when
used on a radically different sample.
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4.5 Computer Programs for the Combinatoria.l Model

The computer programs discussed in this section were

written in PL/I and run on an IBM 36C/65. Assembly language

subroutines were used to generate random numbers and to count

the number of ones in a bit string.

After the comparison of the document words wi.4.1 the

thesaurus, -7tion 5.2.5) .there -ere a total 'of "2,440

clue vector -f these, 6C61 recofded no matches wita the

thesaurus and AO indexer assignment:s for that particular

index term. In other words, the entire clue and indexer

vector was zero. ANDing and ORing of these all-zero vectors

would not have affected the Boolean model, .so they were

eliminated from further processing as far as this model was

concerned. From the remainino 6379 non-zero vectors, 2048

vectors were chosen randomly with the random number generator

proposed by Lewis, Goodman and Miller (1969). This

particular sample size was chosen because the IBM 360

machines can perform Boolean operations on a bit string of

length 2048 in a single machine instruction.

The master vector for each of these 2048 observatio;is was

then read into core and organized in an array. This array

was 60 bits wide (one bit for each clue type) and 2048 bits

high (one bit'Eor each observation on the sample). T.le array

was then transposed so that it could be efficiently handled

in later Boolean operations. The same procedure was followed

with the indexer array. ReO-orded in the master.vector, set

82
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was information about whether each indexer assigned a

particular term, or did not assign it. Each indexer's choice

of terms then could be rer-esented as an array one bit

wide(one bit to indicate whether the term was assigned or

not) and 2048 bits high bit for each observation in the

sample) . Since there 11,=!_=, :welve indexers, the array was

actually 12 bits wide. Thig 7crc_ w- also transpcsed so

that it could be compared ef:ie tly ith the clue array.

The ANDing program then 1: cess 1 the clue and indexer

array in the following manner. e cl.,laa array, now 2048 bits

wide by 60 high, was read into The indexer array, now

2048 bits wide by 12 high, was also -::ead into core. The

program then .tested the first clue against all twelve

indexers. It did this by ANDing the clue vector with the

first indexer's vector and counting the number-of one bits.in

the 2048.1:At string. Counting was done with an Assembly

language sdbroutine suggested by Raduchel (1970). The number

of one bits in 'the ANDed string eoualed °the number of

observations lqhich -the caze vector agreed with the indexer

- that ls, the number of case 2's in the sample. This is the

numer.ator of the figure-of-merit. Ihe same first clue* was

then ORed with the same indexer vector, and the one bits in

the ORed string counted. The number of one bits in :this ORed

string equaled the number of observations in which either the

clue type or the indexer indicated a term should be assigned

- that is, the number of case 21s plus case 3*s plus case 4's

in the sample. This ois the denominator of the figure-of-

merit. This sequence of ANDire. and ORing a clue vector -41th
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the ;indexervector. was repeated for each of the twelve

. indexers. The resulting average , figure-of-merit was then

stored . w,ith-the clme pattern and vector, for later use in the

.0Eing program* Ot.course, if-t-he figure-of- it was zevo,

the vector amd the information about it were discarded-.

After processing the first clue vector LI) this manner,

the program then ANDed the first clue vector 1.ith the second

and tested the resulting vector aaainst the indexer vectors.

It then -tl-ied ANDing in the third vector, and so forth. When

the program had tried all possible ANDed combinations

involving the first clue vector, it then moved on to the

second. This ANDing sequence was chosen to minimize access

tiwe in core. The result of this processing was a total of

5572 ANDed vectors.- The best of these vectors had a figure-

of-merit of 0.11517.

The ()Ring programs were organizd in a similar manner,

except that there was not enough core storage or computer

time to handle all 5572 ANDed vectors. :For this reason, the

best 300 ANDed vectors were processed one at a time against

the other ANDed vectors. (Thing of pairs of ANDed vectors

produced a total of 45,150 ORed vectors with a high figure-

of-merit of 0.15051. 0Eing continued, one stage at a time,

until a maximum of eight ANDed clues had been ()Bed together.

The vector with the highest figure-of-merit was separated by

sorting and is discussed in Chapter 6.
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The confidence interval around the best figure-of-mer't

was obtained by taking random selections of 32 observations

from the 2048 observations in the final best vector. Th-

individual figures-of-merit fcr each of these smaller groups

were calculated and the results used to compute t2.s.

confidence interval.

8 5,
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Chapter. Five

EXPERIMENTAL PROCEEURES

AND SAMPLES
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5. Experimental Procedures and Samples

5.1 The Documents and Indexers

A group of scientists and engineers (see Section 2.6)

with experience in the field of instrumentation was available

to serve as scientist-indexer subjec7ts. To cater to their

field of speci.aization, all documents indexed by any of the

following terms were selected from the 1969 :=;ubject index of

U.S. Government Research and Development Reports (USGRDR):

acoustic measuring instruments, aircraft instruments,

astronomical instruments, charge measuring instrLments,

electrically powered instruments, electric measuring

instruments, meteorological instruments, optical measuring

instruments, pneumatic instruments, radiation measuring

instruments, recording instruments, spacecraft instruments,

strain roasuring instruments, surveztying instruments,

temperature measuring instruments, thermal measuring

instruments, time measuring instruments, voltage measuring

instruments. These terms are the set of descriptors with

'instruments1 as the last word with two exceptions, surgical

instruments and musical instruments, which were not included

because they fell outside the usual range of instrument

subject expertise for the individuals involved.

The 1969 USGRDR indexes contained 78 documents indexed

under the above terms. These documents were arranged in

ascending order by the report number. A random number table

was used to select twenty documents to serve as a test
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sample. The complete information for each of these twenty

documents was then keypunched directly from the USGFDR entry

(see Section 5.2.1 for details). Only the title and abstract

were used in the experiments discussed here. Hereafter, the

word "document" means only the title and abstract of the

document as those titles and abstracts appear in USGBDR.

Two groups indexed each of the twenty documents. The

first group consisted of the six librarian-indexers and the

second, the six scientist-indexers. Each indexer was given

the same set of materials fzom which to work. This set

consisted of 1) the titles and abstracts of each c)f the

documents to be indexed in a standard printed format, 2)

indexing instructions and 3) the Enaineers Joint Councj_l

(EJC) Thesaurus of Engineering and Scientific Terms (1967).

The standard document format was produced by a computer

program which arranged each document cn the page so no words

were broken at the end of a line. Some standard information

was printed at the bottom of each page. The documents were

printed on alternate pages so the indexer could see only a

single document at a time. See Figure 5.01 for a reduced

copy of one page of this printout.

The instructions to the indexers are reproduced in Figure

5.02. A page from the EJC Thesaurus is reproduced in Figure

5.03. The terms chosen by the indexer for each document were

keypunched and a computer program then collected the

individual index sets for each of the documents and i-or each

thesaurus phrase assigned. This prcgram provided the "terms-
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assigned', information for the programs discussed tn Section

5.2.
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5.2 Clue Counting Procedures

The problem of finding, identifying and counting

particular types of clues in natural language text is common

to both of the indexing models used in this thesis.. When

even moderate numbers of clues must be located, the task

becomes much too tedious to be done accurately by hand. For

this reason, computer programs were written to find and count

each clue type. All of the.computer programs discusst ... in

this section were written in PL/I and run on an IBM 360/65.

5.2.1 Keypunching

Each document in the sample was keypunched, proof-read

and corrected. In general, the text was keypunched exactly

as printed. Exceptions to this rule were canned by the

limited keypunch character set:

1 If the document contained a character not on the

keypunch, the word for that character was

substituted. This rule was very seldom needed.

When words were broken with a hyphen over the end

of a justified line of printed text, the hyphen was

dropped and the word glued togethern again in the

keypunching.

3 Subscripts and superscripts were keypunched on the

line with the text.

4 All lower case letters in the printed text were

keypunched as upper-case characters.



84

Figure 5.04 shows the original printed version of one of the

documents. The machine-printed version of this document is

shown in Figure 5.01.

A program was written to isolate each word-in the running

text. This program considered a word to be any sequence of

the alphabetical characters (A...Z) unbroken by a non-

alphabeti.c character (0123...9,:;/0etc.). Since none of the

thesaurus terms contained non-alphabetic characters, this

procedure did not discard any potential matches. Each of the

single words was written on a sequential file with

information on the docuMent beiny processed, the location of

that word in the document (title or abstract) and the

relative position of the word in the document (counting the

fi2:st word in the document as one, the second word as two,

etc.).

5.2.2 Reduction to Singular Form

The matching procedure detailed in later sections of this

chapter considers singular and plural forms of a word to be

equivalent. Each of the words isolated in the previous

section was tested for the ending 'ies°, 'es* or Is'. If a

word ended in 'ies6, this ending was changed to a '371; if the

word ended in 8sv, the °s4 was dropped; if the word ended in

o est the ending was dropped after sibilantr (vs°, ss°, °c°,

o sh,, cstc.). Exceptions to these general rules were

programmed individually. For instance the singular forms of



'pulses° and emarsv do not follow the regular rules and were

therefore handled as exceptions,

Since the comparison had to be made between the document

and the thesaurust the same procedure was followed for the

words from each of the thesaurus descriptors. Figure 5.05

shows the singular form of some words from the document in

Figure 5.04.

5.2.3 Stemming

The root segment of each of the words was then found with

the stemming algorithm suggested by Lovins (1968). This

algorithm searches for the longest match in a list of endings

ordered by length. If a match occurs, and if context-

sensitive conditions associated with that ending are

satisfied, the program strips the ending from the word. The

resulting stem is then additionally transformed with recoding

rules which handle spelling exceptions.

To minimize search time, the list of endings was hashed

with the division method (see Lum, Yuen and Dodd (1971) for a

comparison and review of various hashing techniques). A

number stored at the hash location pointed into a separate

table which resolved clashes and itemized the context-

sensitive conditions to be satisfied for each of the endings.

If the conditions were satisfied, the recoding procedures

were invoked. The resulting stem was then paired 'with the

original word in a record comprised of document number,



location, and relative position. Figure 5.05 also shows the

stemmed form of some words from the document in Figure 5.04.

The appendix summarizes the additions and changes to Lovines

endings, conditions and recoding rules necessitated by the

vocabulary in our sample.

5.2.4 Thesaurus Terms Used in the Models

The Engineers Joint Council Thesaurus contains 17,810

descriptors. Most of the thesaurus would have no matches

with any sample document and would not be assigned by einy of

the indexers. Thn, most of the thesaurus could reasonably

be expected to have an indexer and clue vector consisting

entirely of zeros. These experimental points would be

useless for this investigation. For this reason, the size of

the thesaurus was reduced for processing in the following

way. First all index terms assigned by any of the indexers

to anx of the docUments were included in the thesaurus.

There were 430 of these terms. This group of terms includes,

for any particular documnt, all the clue vectors which have

non-zero indexer values.

To include other vectors with guaranteed non-zero clue

values in the vector, a sort and count was made of all the

words j% all the documents. omitting function words such as

/as'. 'a', 'thee, the most frequently used words were used to

search the complete VOC Thesaurus for descriptors containing

these words. Descriptors containing these frequently used

words were added to the first group of 430 descriptors. Note
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that this procedure forces the models to account for, not

just the assignment of descriptors, but also the non-

assignment of likely descriptors. This choice makes the

model more conservative in ascribing machine-like behavior to

the humans. The final mini-thesaurus contained 622 terms.

5.2.5 Document-Clue Matching Procedure

As discussed in Section 2.5, matching phrases, synonyms,

words and roots in the thesaurus and in each document were

counted to produce what we are calling a "clue vector". 'Por

each document-descriptor pair, this clue vector summarizes

the 'Aumber of times each clue type appears in the document.

Informaticn on the number and types of clues existing in

each document was obtained from a program which compared each

descriptor in the mini-thesaurus against the words of each

document in the sample. The program first hashed a

document's words into core storage. A single thesaurus

-phrase was then read in. It waS compared with the words of

the document by hashing the thesaurus words and searchtng for

matches with the hashed document words. If matches did

occur, the clue vector for that document-thesaurus pair was

updated with the appropriate informaticn and the program then

read in the next thesaurus phrase. After the entire mini-

thesaurus has been compared with the first document, the

hashing locations were cleared so that the next document's

words could be processed. This program processed a total of

12,440 vectors for the documents in about 30 minutes.
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5.3 Sub-Samples Tested

The result of the processing described in Section 5.2 is

a set of 12,440 clue vectors, 622 clue vectors for each of

the 20 documents in the sample. We will call this set the

'master setq Of the 12,440 vectors, 6061 were completely

zero in both .indexer assignments and clues; 6379 were non-

zero in at least one portion of the iecord.

Since the difference i- indexing behavior between

scientist-indexers and-librarian-i7dexers is of considerable

interest, two new sets of --1,1440 clu ,.7ectors each were

produced for:these two groups ot ::-.1exers. Each of the new

vectors sets was based on he indexing done by the

appropriate indexer group.

Several other subsets were taken. Since many of the

studies in Chapter 2 considered only the terms assigned by

the indexers, a subset of vectors was made by separating only

those terms which were assigned by at least one of the

indexers. These vectors should show greater evidence of

"machine-like" indexing than the rest cf the master set, if

the effects noted in Chapter 2 hold. A second subset was

made by separating only those terms assigned by two or more

indexers.

It is also of interest to know how each document and

indexer varies from the average. Information on the

documents is obtained by processing the clue vectors for each
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document separately. Information on each indexer is obtained

by re-running the entire model with clue vectors based only

on the indexer in question. MVIChIGoe runs will characterize

individual documents and indexers in detail. They might, for

instance, reveal a group of documents which axe modellc?d

extremely well, ana a group which are not modelled

sucessfully. Further inspection cf these documents may elp

to explain the success or failure of tIle model. Five

documents were selected randomly for individual processi.ng:

documents 1, 2, 6, 14 and 20. Four indexers were selected

randomly for individual processing: 4, 6, 7, 11.
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5.4 -atistics Describing the DocuRlents and Indexers

To give the reader a feeling tor the document s=_mple,

some numerical parameters summarizing the incidence of 7,-lues

have ')een tabulated in this section. 7ignre 5.06 gives

information on the lengtIa of the documents in the sample.

Figurc, 5.07 lists the num12er of terms which were assigned by

from :le to tvelve indexers. For example, on documett 4,

eleve-. of the indexers agreed one of the '-_erms shc ld be

assig ad, while there were 26 terms assigned by just a of

the Inde.xers. ri=ure 08 summarizes the number

each :lue type,occurred 5_7_ the entire documen-= sample. Note

that the number of clues occurring in the t:-tle were always

less than the number occurring in the abstract. This is

because the title was short in comparison to the abstract.

Figure 5.09 gives the distribution denity of all clue types

in each. of the sample documents. For instance, of the 37,320

possible clues for each document (622 thesaurus terms times

60 clue types) 508 clues appeared once each in document 1.

However, 61 clues appeared four times each in document 1.
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Figure 3.02 Instructions for the indexers

11,T7'71F7 :T17-)Ms

I a7rine that you are a professional indexer for STAR (Scientific
7ec_nical Aerospace Reports) or USGRDR (U.S. Government Research

and 7'eveiopment Reports). Both of these indexing and abstracting
journals are distributed internationally to engineers and scxentists
interested in current information in their fields.

Ct each page of the enclosed printout is a document. Below the
document are numbered blank lines on which you are to record
yol:-.7 choice of indexing terms for that document. The
terms west be chosen from the enclosed EJC Thesaurus of Engineering
and 17tentific Terms. (If you are not familiar with this thesaurus,
See description following these instructions.) Space is
provf.1 for up to ten indexing terms. If you wish to

more than ten terms to a document, simply write in
the a....ditional ter,s; at the bottom of the page.

Tou may find it helpful to note the important subjects while
readillg over the e.ocumz,nt. You may use the space below the
docemert for this purpose. The thsaurus can then be used to
rephrase these subjects into the appropriate index terms
on the numbered lines or below them.

Choose the most appropriate (applicable or useful) terms from
the thesaurus for each document. Any number of terms may be
assigned. Be as specific as possible in assigning terms. Remember
you are indexing for engineers and scientists who will want to find
these documents for their own research. The terms you assign
should enable them to locate pertinent information quickly.

Please keep track of the time you spend indexing. Use the right-
hand side of the printout page to record each time you begin
indexing in hours and minutes, for instance: begin 4:32. When
vou are interrupted or have to quit, record the end time as:
end 5:25. This job should be least imposing if you choose a
time and a place permitting extended periods of concentration
without disturbance.

In summary, you have two tasks:
1) Assign the best index terms to each document,
2) Keep track of all time spent indexing.

If you have any questions at any time, please call me
collect at home (415-327-0727) or at work (408-227-7100
ext. 5435 or ext. 5611). Many thanks for your help.

Caryl



9 3

5.02 Instructions for the indexers (continued)

;.IPTION OF THE EJC THESAURUS

wo sections of the thesaurus have been marked with tabs.
first section lists all index phrases in alphabetical

character-by-character ignoring spaces and punctuation.
-s that this is not the usual alphabetical order.

-1 _Ills', appears before Hand sawsu because the blank in the
4ord phrase is ignored.) This section of the thesaurus
suggestions for broader terms (HT), narrower terms (NT) and

terms (PT). These additional terms ;nay be useful in
ing the best indexing terms for the document.

he second section of the thesaurus lists, in alphabetical
c- every word used in every index phrase in the first

_on. You will find this section helpful if you woald like
t: ocatO all index phrases containing a particular word.
A=21--eviations used in both sections are explained in footnotes
a-= tHe bottom of each page.



Figure 5.03 Page from the Engineers Joint Council Thesaurus

Interplanetary dust 0301
Smaller than micrometeoroids
UF Meteoroid dust
BT Interplanetary medium
RT Micrometeoreids

Space hazards
Interplanetary flight 2201
BT Space flight
RT Astrodynamics

Orbits
Spacecraft guidance
Space exploration
Space navigation

Interplanetary matter
USE Interplanetary medium

Interplanetary medium 0301
UF Intemlanetary matter
NT Interplanetary dust
RT Interstellrr matter

Meteoroids
Micrometeoroids
Solar atmosphere
Solar wind
Spacecraft debris

interplanetary navigation 1707
2201

BT Navigation
Space navigation

RT Celestial navigation
Radar navigation
Radio navigation

Interplanetary plasma
USE Solar wind

interplanetary probes 2202
Unmanned vehicles for interplanetary

missions; for manned interplanetary
vehicles see interplanetary spacecraft

BT Spacecraft
Space probes
Unmanned zpc.ceeraft

NT Mars probes
Venus probes

RT Deep space probes
Interplanetary spacecratt
Lunar probes
Planets

interplanetary sp:sce 0301
RT Aerospace environment

Interplanetary spacecraft 2202
Manned vehicles for interplanetary

missions: for unmanned
interplanetary vehicles see
interplanetary probes

BT Manned spacecraft
Spacecraft

RT Artificial satellites
Deep space probes
Interplanetary probes
Lunar spacecraft
Mars probes
Rendezvous spacecraft
Space probes
Space stations
Venus probes

interplanetary trajectories 2203
BT Spacecraft trajectories

Trajectories
R.T Circumlunar trajectories

Earth moon trajectories
Parking orbits
Planetary orbits
Sendezvous trajectories
Transfer orbits

interpolation 1201
BT Numerical analysis
NT Divided differences

Intemrster routines 0902
BT Compete,* programs

Computer systems programs
RT Assembler routines

Compilers
--Japbrating systems (computers)

Simulator routines
Translator routines

interpreters 0902
NT Punched card interpreters
RTPunched card equipment

interrogation 0502
RTData processing

Intelligbnce
interrogator :rantiMitters 1702

BT Radio equipment
Radio transmitters
Transmitters

RTRadio receivers
Radio transponders

interrupters 0901
BT Control equipment

Electric switches
RI Circuit breakers

Circuit protection
Electric relays

Vacuum switches
intersections 1302
No grade separation
UF Grade crossings

fRailroad crossings
NT Interchanges
RT Crossings

Highways
Ramps
Roads
Streets

Mterservico support
USE Joint operations
and Logistics operations
and Logistics support

interstate highway system 1302
RT--Cargo transportation

Highway transportation
interstata tranapOrtation
Limited access highWays

interstate transportation 1505
BT Transportation
RTAir transportation

Ca;go transportation
Commercial transportation
Common carriers
Highway transportation
Interstate highway system
Passenger transportation
Petroleum transportation
Pipelines
Pipeline transportation
Hail transportation
Water transportation
Waterway transportation

Intorstallar flight
USE Space flight

interstellar matter 0301
RTCelestial bodies

Cosmic gas dynamics
Interplanetary medium
Nebulae

interstices 1407
RT Capillarity

Cavities
Filterability
Fluid infiltration
Percolation
Permeability
Porosity
Voids

interstitials 2002 1106
RTAdditives

Crystal defects
Crystal structure

Intestinal atresia 0605
BT Congenitai abnormalities

Gastrointestinal diseases
Intestinal diseases
USE Gastrointestinal diseases

inteslinai obstructions 0605
NT Intussusception
RT Adhesions (intestines)

Appendicitis
Benign neoplasms

Constipation
Gastrointestinal diseases
Hernias

Inflammation
Neoplasms

Peritonitis
Intestines 0616

BT Digestive system
Gastrointestinal system

NT Colon (intestines)
Duodenum
Ileum
Jejunum

RT Appendix (intestines)
intracellular potential 0605
RTElectrophyslologic recoo ding

intracranial
electreencephefogrephy 0510
0605

BT Electroencephalography
Electrophysiologic recording

RT Scalp electroencephalography
Intramuscular Infusions
USE Parenteral infusions

intrastate transportation 1505
BT Transportation
RT Air transportation

Cargo transportation
Commercial transportation
Highway transportation
Passenger transportation
Petroleum transportation

Pipelines
Rail transportation

Water transportation
Waterway transportation

Intravenous Infusions
USE Parenteral infusions

intrinsic viscosity 2004
BT Rheological prnpertles

Transport properties .

Viscosity
RT Dynamic viscosity

Kinematic viscosity
Relative viscosity
Saybolt viscosity

intrusive rocks 0807
UF Abyssal rocks

Plutonic rocks
BT Igneous rocks

Rocks
NT Diabase

Diorite
Dunite
Gabbro
Granite
Magma
Monzonite
Pegmatite
Peridotite
Porphyry
Quartz diorite
Quartz monzonite
Syenite

RT Basic rocks
Phanerite

USE = Use preferred term: UF Used For: BT = Broader Term: NT = Narrower Term: RT = Related Term. 209



Figure 5.04 Printed version cf the document in Figure 5.01

NG/3-38439V TRW Systems Group. Redondo Beach. Calif.
FLIGHT PROTOTYPE MODEL METEOR FLASH ANALYZER
Final Report
F. N. Mastrup and C. D. Bass Apr. 968 195 p refs
(Contract NAS9-6532)
(NASA-CR-92364: TRW-05202-601 5-R000) CFSTI: HC 53.00 /MF
$0.65 CSCL 148

A flight prototype Meteor Flash Analyzer with a three-channel
radiometer wc.s designed. constructed. and tested. Each channel
has video outputs to measure the intensity vs. time variaticn of
individual meteor flashes: and there are a total of 9 meteor data
channels for making related measurements. The long wavelength
(iron) channel nearly coincides with the conventional spectral range
for photographic meteors, providing correlation with ground-based
observational data. Detection sensitivity for terrestrial meteors in
the iron channel is background radiation limited: and this appears
to yield superior sensitivity for the optical detection of meteors in
wavelength bands below the ozone limit at 0.30 a. For satellite
altitude of naut m. detector field of view of 30°. and detector
aperture dia of 5 cm, limiting photographic meteor magnitude wos
4-3.9. with an inverse count rate of 5.6 min/meteor. At 600 naut
m. count rate is expected to be 22 min/meteor with a magnitude
of --1.1. Significantly larger count rates are expected for the
magnesium and silicon channels. M.W.R.

Figure 5.05 Singular and stemmed forms of some words from
the document in Figure 5.04

singmlar form

flight
prototype
model
meteor
flash
analyzer
designed
constructed
variation
measurement
photographic
providing
observational
sensitivity
detection
detector

stemmed form

flight
pt-ototyp
model
meteor
flash
analys
design
construc
vari
measur
photograph
provid
observ
sensit
detect
detect

95
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Figure 5.06 Length of the sample documents

Docum7mt Number of characters
in document

Number of words
in document

01 957 139
02 663 89

-2
%.,^..., 931 136
04 1164 166
05 1187 179
06 999 140
07 1208 169
08 606 86
09 1062 154
10 267 33
11 352 127
12 1078 153
13 1022 136
14 442 62
15 .494 62
16 1288 207
17 1240 184
18 967 134
19 800 116
20 580 64

Total 7807 2556

Average 890 128

103
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Figure 5.07 Ditribution of Indexing Consensu.s oil sample

kverage number of indexers assigning a term: 2.31

Standard deviation: 2.23

Number of Indexers Assigning

Document 1 2 3 4 5 6 7 8 9 10 11 12

1 17 6 3 1 1 0 1 1 0 0 0 0

2 11 6 0 0 0 2 0 0 0 0 0 1

3 23 5 5 2 2 0 1 0 0 1 0 0

4 26 9 0 0 0 0 1 0 0 0 1 0

5 10 11 2 1 3 0 1 0 0 1 0 0

6 14 7 3 1 0 1 0 0 0 1 2 0

7 16 4 0 0 0 1 0 2 1 2 0 0

8 13 3 3 0 4 0 1 0 0 0 0 0

9 22 8 4 2 2 1 0 0 0 1 0 0

10 13 4 2 1 0 2 0 0 0 0 0 1

11 15 7 2 1 2 0 0 0 0 1 0 0

12 25 4 5 4 3 2 1 3 0 0 1 0

13 21 14 3 1 4 0 0 0 1 1 0 0

14 13 1 2 1 0 1 0 0 1 0 1 0

15 17 3 0 4 0 1 0 0 1 0 0 0

16 18 7 2 0 1 1 0 0 1 0 0 0

17 14 4 5 1 1 C 2 0 0 0 0 0

18 18 3 1 1 3 1 1 1 0 0 0 0

19 14 4 3 2 C 1 0 0 0 2 0 0

20 7 2 2 1 1 1 0 0 0 0 1 0

Totals 327 112 47 24 27 15 9 7 5 10 6 2

104
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Figure 5.08

Type of

Match MN

Number of

ST

Clue Cccurrences

OS ER

in Entire Sample

NE EL lotal

3T

3A 1 2 0 0 0 0 . 3

2T 5 6 0 0 2 1 14

27 61 73 17 10 54 105 320

HT 324 448 149 243 600 1492 3256

HA 2216 3246 1141 1845 4509 11758 24715

M2T 215 297 84 180 285 988 2049

M2A 1632 .2245 634 1087 2593 7352 15543

MIT 18 31 10 25 38 68 190

MIA 220 283 139 220 498 P08 2168

Totals 4692 6631 2174 3610 8579 22572 46258

(See Figure 6.01 for an explanation of acronyms.)
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Figure 5.09 Distribution of All Clue Occurrences in Documents

Number of

1

Occurrences/rocumcnt for All Clues

Document 1 2 3 4 5 6 7 8 9 10+

1 508 254 73 61 16 27 16 12 3 21

2 465 222 77 46 18 10 2 4 4 10

3 575 256 188 117 23 43 15 27 7 36

4 681 232 59 29 16 16 3 11 18 16

5 485 178 113 51 28 20 16 17 6 52

6 617 214 90 52 84 35 44 48 13 85

7 365 103 70 12 10 79 4 2 2 22

8 327 93 60 13 15 17 5 1 3 6

9 460 264 34 127 11 34 4 15 4 24

10 349 88 19 3 8 0 1 2 0 8

11 598 397 89 54 13 22 6 11 1 18

12 693 372 67 71 24 18 10 12 7 27

13 936 183 296 78 40 64 13 11 25 38

14 312 40 14 10 C 0 1 4 2 2

15 602 231 42 24 84 12 4 5 2 23

16 358 110 52 23 49 4 212 22 7 69

17 532 132 56 25 5 88 9 5 , 24

18 452 241 76 46 28 24 12 9 1 13

19 746 183 149 51 22 27 7 6 6 29

20 449 152 103 26 9 15 3 4 3 16

Tot141s 10511 3945 1747 919 483 555 387 228 116 539
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6. Conclusions

6.1 Introduction

This chapter discusses the results of the models

described in Chapters 3 and 4. lp simplify the following

discussion and to save rePeatj-llg long names, each of the

clues has been assigned a briat descriptive name. These

acronyms are listed in Figure 6.01 (pages 122 and 123)

together with a fuller descriPtio0 of the clue.
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6.2 Evidence For and Against Machine-Like Ina-Tinry

6.2.1 Results ol the Multiple Linear Regression

Information about the major regression runs is surmarized

below.

All Indexers

6379 experimental events

47 clue types with correlation greater than .4001

with dependent variable

multiple correlation coefficient (R): 0.5386

square of correlation coefficient (P2): 0.2941

99% confidence interval for R: .5153 to .5611

Librarian Indexers

6379 experimental events

45 clue types with correlation greater than .0001

multiple correlation coefficient (R): 0.5364

square of correlation coefficient (Pe): 0.2877

99% confidence interval for P: .5130 to .5590

Engineer and Scientist Indexers

6379 experimental events

46 clue typE3s with correlation greater than .0001

multiple correlation coefficient (R): 0.4674

square of the correlation coefficient (P2): 0.2184

99% confidence interval for P: '.4418 to .4923
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Perhaps the most dramatic result is that none of the

samples taken shows either a very strong oE. a very weak

correlation between the descriptors assigned and the

documents. At least for our rs.empl lineae ceeession

accounts for about thirty percent of the indexing

assignments.

As expected, the librarians' indexing could be predicted

more accurately from the clues than could the indexing of the

engineers and scientists. The difference was significant at

the 99% level. The inexperience cf the engineers and

scientists with indexing and with the thesaurus may have made

them much more dependent unon word-for-word matches between

the descriptors and .the document than otherwise might have

been the case. Hence our results are probably conservative.

Differences between librarians and engineers or scientists

might be more pronounced.under other experimental conditions.

It is difficult to compare the results of our multiple

linear regression model with results obtained from previous

studies because of a number of differences in the studies.

First, there is presently not enough data on how the

subject content of the sample documents affects the results.

The documents used in our sample were in some,instances

highly technical discussions of rather specific engineering

problems. The subject field of our documents compares most

closely with the studies done by Slamecka and Zunde (1963).
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Unfortunately, they made only a curoy examf

data fron the viewpoint of machine-like indexing.

Secondly,- there is the problem of the size of the sample

af indexers. We used a total of 12 indexers, six librarians

and six engineers or scientists. All twelve indexed each of

the sample documents. Wo previous study had such a 1E,rge

group of indexers.

Thirdly, most previous studies did not account for the

non-aszignment of index terms as discussed in Chapter 2. The

effect of looking only at assigned terms is demonstrated by
-

re-running the regression on only those experimentAl events

which have an indexer value abolte zero. Two runs were made.

/n the first, a term had to be assigned by at least one

indexer to be included in the regression; in the second, a

term had to be assigned by at least two indexers to be

included. Information about these two sub-samples is given

below.

At least one indexer assigned each term

591 experimental events

46 clue types with correlation greater than .0001

multiple correlation coefficient (R): 0.5486

square of the correlation coefficient (R2); 0.3009

95% confidence interval for P: .4896 to .6026
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At least two indexers assigned each term

264 experimental events

41 clue types with correlation greater than .0001

multiple correlaticn coefficient (R): 9.5585

square of correlation coefficient (R2): 0.3120

95% confidence interval for P: 4691$ to .6363

As expected, P2 increases as more of the indexers agree

to assign a particular term but the results are not striking

or significant. Because of the small number of experimentaL

events in which a majority of indexers agreed, and because of

the large number of independent variables, the confidence

intervals for these coefficients is ccnsiderably larger than

for the full sample size.

Fourth, although all of the above regressions tested the

eff?ct of sixty possible clue types cn the indexers, they

still could account for only about a third of the variance in

the.indexing. This is in contrast to earlier studies which

tock only one or two clue types into account, but which did

not consider the non-assignment of index terats. the effect

of the small number of clue types would, in general, be to

decrease the correlation between the clue types and the

indexing. The inclusion of only assic,ed index terms would

tend to have the opposite effect. This is probably why our

numerical results are very roughly comparable to some studies

done with fewer clues and based on assigned terms.

112



106

Lastly, it is also possible that there is a theoretical

maximum to the amount of indexing which can be matched wl.th

document words. For example, we cztn imagine a thesaurus

which was specifically designed for a particular group of

documents. This imaginary thesaurus might contain only words

and phrases abstracted directly from the documents

themselves. In this case, there is little opportunity for

the indexer to assign a term not already in the document. We

could also imagine a second thesaurus which made it a rule

never to use a document word or phrase as a descriptor.

Although such a thesaurus would probably be very difficult to

compile, it would guarantee that there was no correlation

between the index terms assigned and the words or phrases in

the documents.

The BIC Thesaurus obviously lies somewhere between these

two extremes. /t is quite possible, therefore, that there

could only be a certain number of matches between the terms

and the document words simply because of the nature of the

documents and the thesaurus. The extent of this theoretical

limitation on the amount of the potential match between the

documents and the thesaurus might account for differences

between results obtained by different experimenters.

113
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6.2.2 Results of the Combinatorial model

Tbe combinatorial model is based cn Boolean combinations

of the sixty clue types. Details of the best Boolean

equation (produced according to the procedure described in

Section 4.3) are given below:

Best Boolean equation

Sample size: 2048

Figure-of-merit (non-trivial asignments): .1611

Standard deviation of figure-of-merit: .0353

Fraction of all predictions modelled (trivial and

non-trivial assignments): .6821

Case 2*s: 125

Case 3*s and 49s: 651

In terms of programming, the Boolean combinatorial model

was time consuming and difficult. Despite careful program

design and coding, it took over an hour of cpu time on an 111M

360/65 to OR 40,C0t , pairs of vectors, calculate a figure-of-

merit for each, and write the results on tape. Similar run

times were required for each stage of ANDIng and Oiling.

Because of these very lot, computer runs, the combinatorial

model is not exhaustive. Instead, as discussed in Chapter 4,

the best 300 vectors from the previous stage were used to

calculate vectors for the succeeding stage.

Another limitation of the combinatorial model was the

practical limitation on the recording of count information

.114



108

for each type of clue in a document. Equation 2.02 is based

on a zero/not-zero decision. Thus there is no difference in

the binary record between a clue type which occurred just

once and one which occurred many times. Once again, this is

a practical decision necessitated by limited computer time.

The lack of clue count information, however, makes thts model

less rich than the regression model.

A limitation on the sample size for the combinatorial

model was also made for computational reasons. However, the

particular sample taken was verified with the regression

model by running that model with both the liLated and the

full data. The regression coefficient for the smaller sample

of 2048 was 0.5387, just 0.0001 larger than it was for the

sample of 6397. The limited ample of 2048, therefore, is

representative of the full sample size of 6397.

The figure-of-merit based on non-trivial assignments.(see

Section 4.2 for definitions of "non-trivialft and "figure-of-

merit") is quite low. There were only a few case 2vs 'in the

best vector and a number of case 3's and 4's. As discussed

in Section 4.4, the standard deviation of the figure-of-merit

was calculated by making use of the Central Limit Theorem.

Sixty-four samples of thirty-two each were chosen at random

from the large sample of 2048. This produced the standard

deviaticn of the figure-of-merit of .0353.

The goodness of the model can also be judged in terms of

the number of case l's and 2*s divided by the total number of

115
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cases. This is the second figure-of-merit (called "fraction

of all predictions modelled") introduced in Equation 4.02 in

Section 4.2 This means that out of 2048 possible indexing

decisions, the combinatorial model duplicated 68% of the

indexers$ decisions. This method of calculatiny this number

is more comparable with the regression model and will be

discussed in Section 6.2.3.

It is unfortunate that more computer time was not

available. It would have been interesting to repeat the

combinatorial model for the sub-samples used with the

regression model and to compare the results. hs can be seen

\7rom the discussion of the relative importance of clues in

Section 6.3, the combinatorial model has a more direct

interpretation of indexer behavior than does the regression

mcdel. Perhaps further refinement of the programming and the

elimination of less valuable clue types may make it possible

tc include count information and larger sample sizes in a

future version of the combinatorial model.

6.2.3 Comparison of the Results of the Models

Primarily because the Boolean model did not make use of

the clue count information in the documents, and because

"best" was defined differently in the two models, there is no

simple, direct comparison between the two models. To make

the figures from the two models somewhat more comparable, a

second figure-of-merit was calculated for the Boolean model.
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This is the number recJe above and discussed in Section

4.2 as "fraction of all predictions modelled".

Both the combinatorial and the regression models uere.run

on the same sample of 2048* The combinatorial model

accounted for 68% of all indexer decslons. That is, of the

2048 decisions, there were 1397 decisions in which the model

correctly predicted what the indexers assigned. The model

assigned when the indexers did, and did not assign when they

didn't. For the same sample, the regression model had an R2

of 0.3009. In other words, approximately 30% of the variance

in indexing could be accounted for by the regression. In

view of the different ways in which these two percentages

were calculated, the amount of indexing accounted for by the

two models may be comparable. The loweic percentage obtained

from the regression is probably due to the linearity assumed

by this model.

In Section 2.5.3 we discussed the assignment rules tested

in the Boolean .and regression models and pointed out that in

some special cases the two models are equivalent. Each of

the four Boolean equations was tested for this equivalence

(that is, linear separability) with the Biswas (1971) method.

'tione can be reali2ed with a single threshold element. Hence

there

models.

is no direct mathematical equivalence between the two

Neither of the models performed well enouvh to be useful

as a substitute for human indexing. A discussion of
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prediction with these models has, therefore, been omitted.

However, the values of A and of the Bls for the first five

steps of the regression are tabulated in Figure 6.05. Notice

that as each new variable is added the previous valnes of the

constant ana of the Bls change. The regression is adjusted

at each stage for the best fit, changing the coefficients for

the variables at each stage. As an example, let us take the

fifth step in the regression. All the variables are

positively related to Y. The higher the number of

occurrences of each of these five clue types, the more likely

the indexer to assign the descriptor. On the average, the

number of indexers assigning a term increases by one unit for

each three additional occurrences of a twc,-word main term ir

the abstract, by two units for each additional occarrence of

a stemmed hcader in the title, and so forth.

The ccl-,Lant and coefficients for the full regression

equation are tabulated in the right-hand column of Figure

6.02. Since the regression equation accounts for such a

small percentage of indexer performance, this tabulation is

not of much practical value.

In summary, then, at least for this sample and this

rather large group of indexers, we cannot model very much of

-echnical indexing with either a regression model or a

Boolean combinatorial model. Until we kno- more about

differences between technical fields, the effect of the

thesaurus on the indexing, etc., it is inva.lid to al :ue thai-

indexers in _general act in a mechanical manner.
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6.3 Relative Importauce of the Clue flypes

We have some specific evidence about the relative

importance of the clue types from each of the models. In

addition, we can compare the clue types important in the

engineer/scientist'regression with the clues important in the

librarian regression. (See Section 2.5.1 for a definition of

each clue type and Figure 6.01 for a table of all clue types

and their acronyms.)

We can make no statements about the value of some clues

in predicting indexing assignments because these clues did

not occur in the sample. There were no title occurrences of
any three-word descriptors, or of us-e, broader, narrower or

related three-word terms in the abstract. Nor were there any

two-word title occurrences of use or broader terms in the

document. sample. (See Figure 5.08 for a sumwary of clue

occurrences in each of the documents.) Note that these would
be the document-thesaurus matches least likely to occur in

any sample because the match criterion was the most stringent

(two and three word matches in the title and three word

matches in the abstract). Note also that a high frequeacy of
a clue type does not mean that the clue is necessarily

important in predicting indexer behavior. Thete do however,
have to be enough cccurreeces of a clue type to make that

clue of practical value in the prediction.

Figure 6.02, 6.03, and 6.04 list the clues u0-'ch have a

correlation greater than .0001 with the th.;,n eariable
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for each of the three major samp.,Les: all inde:eers librarian

indexers, and engineer/scientist indexers. These figures

also show the Pe at each step and the increase in P2 caused

by the addition of each variable to the regression. Although

the order of importance varied from sample to sample, the

same clue types tended to be at the top of the list.

In all runs, a match of a two-word descriptor in the

abstract was the most important of the clues. This single

clue accounted for 63 to 75% of the final value of R. Other

clues consistently occurred in the top group of all three

regres Jn runs, They were modifier2 of use references in

the abstract, two-word use references in the abstract,

modifierl of broader terms in the title and modifier2 of the

stemmed term in the abstract. Although. main and stem two-

word terms it the title, main three-word terms In the

abstract and modifier1 use refercmces in the title were also

in the top group, they are less important ber..!ause they

occurred infrequently in the sample. Thus main entries, use

references, modifiers1, modifiers2, and two and three word

phrases are most important clues in predicting indexer

assignmetts.

There are also several clues which rank high in the

regression for all indexers, but which have quite different

rankings when the engin r and librarian regressions are

compared although no test of statistical significance was

made. These clues are stemmed header terms in the title, the

maj-1 term header in the abstract and the use term header in
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the abstract. ThG stemmed header in the title is rated low

by the librarians and high by the scientists; the main term

and use term headers in the abstract are rated high by the

scientists and low and mid-range respectively by tie

librarians. Apparently the header word of a descriptor is

treated differently by the librarians and scientists. Note

that there are no header clues in the top group agreed upon

by all indexers as important.

Let us contrast the clue ranking cf the regression model

with that given by the Boolean model. The best four Boolean

equations are given below.

(MN 2A AND ST 2A) OR (MN HA AND MN M2T) OR (US M2T AND MN

HA)

(MN 2A AND ST 2A) OR (MN HA AND IN M2T) OR (US M2T AND ST

HA)

(MN 2A AND ST 2A) OR (MN HA 1C4U MN M2T) OR (US M2T AND MN

HA AND US M2A)

(MN 2A AND ST 2A) OR (MN HA AND MN M2T) OR (US M2T AND ST

HA AND US M2A)

where:

MN 2A is a two-word main term in the abstract

ST 2A is a two-word stem in the abstract

MN HA is a main term header in the abstract

MN M2T is a main term modifier2 in thia title

US M2T is a use reference modifier2 in the title

US M2A is a use reference modifier2 in the abt,ict
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Eac4 of the .top equations contains the same two ANDed

terms plus a third term which is variatle. The clue types

mentioned in all of the equations are main entries, stems or

use references. Narrower, broader and related terms do not

serve as good clues in the Boolean eqmations.

The first of the ANDed expressions is a very simple

requirement. If the descriptor. Nas two words, then it must

appear, as a phrase, in the abstract of the document if the

descriptor is to be assigned. (Recall that there were no

three-wbrd abstract or two-word title occurrences (see Figure

5.08) so that these clues did not occur in high enough

numbers to be represented in the final equation.) Of course,

the stem of any term occurs whenever -.the term itself occurs

by the clue definition rules in Section 2.5.1. The- result is

consistent with the results of the regression model where

two-word main terms in the abstract account .for a large part

of the final value of the regressio coefficient..

The second ANDed expression rpre41,nts a second way to

recogn:,ze a two-word phrase. The header ft'r the descriptor

and the modifier2 tor that descriptor must be present In the

document. Since most descriptors -are two-word phrases, this

is simpl.y another way of saying that the words of the p-rase

must be present in the document.

The third ANDed expression is variable, but always

contains US M2T and either MN HA or ST FA. In two of the

equations, US M2A is an additional clue. A9ain MN BA and ST

122
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HA are almost c3guivalent, so this last ANDed expression

heomes: (MN HA and US M2T (and sometimes US M2A)). An

inspection of the use references and the main terms when

these clues occur shows that in many cases the moaifier2 for

the main term was the same as the modifier2 for the use-for

reference. For example: 'optical instruments/ use °optical

measurements/, Hence this ANred expression once again

reduces to: find the two-word descriptor fhrase in the

document.

In summary, two-word phrases account for the largest

amount of indexing behavior. Some potentially valuable clue

lengths, such as three-word terms, do not occur at all or in

large enough numbers to make possible a decision about their

value. Main, use and stemmed terms are the most important

thesaurus relations. In general, broader, narrower and

related terms from the thesaurus are not very useful in

accounting for indexing behavior. Header terms are rated

differently by the two sub-samples, but are not important for

the entire samp _a. Iinally, no generalizations can be made

about the relative importance of title and abstract clues in

accounting for indel,ar performance.
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6.4 Idividual Documents and Indexers

The regression- coefficients cbtained for five randomly

selectei documents im the ample were most interesting. The

pertinent information, is summarized below.

.Document Number

6 1.4

experimental events: 822 622 622 622 622

signif. clue types% 37 29 36 25 40

correlation coeff.: .6412 .8574 .7228 .7868 .9084

R2: .4111 ..7351 .5224 .6190 .8252

lower 99% conf.int.: .5760 .8274 .6695 , ..7440 .8885

upper-99% Conf. Int.: .6963 .8825 .7687 .8232 .9249

most important clues: MIT113 MN 2A RL 2A US.2A MN 2T

US. 2A US M1A RL M1T MN HA US 2A

MW M2A MR M2T MN M1T- MN HT L4R M1T

MN .2A. .13R M1T MN 2A. HR. HA ST HA

The significances of a clue type depends upon its cont tion

to the total, regression. A clue type was considered

significant if it had a correlation of at least .0001 with

the dependent variable.

Note that the most important clue, ty_pes and the

correlation coefficients vary widely.. from document to

document.. In general, the correlation coefficient is

considerably higter for_ an imdlvidual docAnent than it-is for

the_ sample as a whole... This means that the regressizin
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coefficient for all the documents is very much a compromise.

The compromise lowers the overall coefficient because clues

which work well on some doctiments don't wort well on others.

As we noted in Section 3.5, this fact decreases the

predictive value of this model.

Separate regression runs were made on the jendexing of

four of the subjects. Some details of these runs are

summarized below.

experimental events:

signif. clue types:

correlation coeff.:

R2:

lower 99% conf. int.:

upper 997, conf. int.:

---

Indexer Number

6 7 11----

6379 6379 6379 6379

43 48 47 48

.3487 .4646 .3120 .2799

.1216 .2158 .0974 .0783

.3200 .4389 .2825 .249

.3768 .4896 .3409 .3094

For each Indexer MN 2A was the top clue, accounting for

70, 78, 64 and 59% respectively of the correlation

coefficient for the fout indexers. After this clue, however,

there were substantial differences among the top group of

clues in the regression. The uniform use of MN 2A as the

most important clue probably accounts for the lop ranking of

that clue in th over-all regression runs.

The fact that indexer exhibited a low correlation

coefficient as an individual, while single documents had high
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correlation coeffi-zients indicates that there tends to be a

common reaction to a single document, but that averaging

across documents tends to decrease the correlation

coefficient because the average is a compromise in clue

styles among the documents lndividua- indexers tend to be

less predictable than an indexer group because one person's

idiosyncrasies are not averaged with another's

idiosyncrasies.
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6.5 Some Suggestions for Further Research

This dissertation concentrated OR textual clues to the

exclusion cf other types of clues (such as syntactic).

Further investigation of other types of clu_s might help

explain the existence of distinctive clue styles in

individual documents. When these styles can be recognized

from information about the document itself, we will have a

better understanding of how an indexer goes about indexing.

Although the Boolean model is of much interest, a

shortage of computer time prevented its full development.

Further research might uncover practical improvements to

speed up or to simplify the ANDing and oping programs so that

a more extensive development of this model could be made.

Our research was limited to an exploration of twenty

documents in the rather narrow subject field of

instrumentation. Since variations in indexing style are to

be expected across subject fields, it would be interesting to

build similar models in other subject fields and to compare

the results.

Neither the regression nol: the Boole a combinatorial

.aodels could be considered very accurate models of human

indexing. However, as can be seen from Figure 5.07, hz1mans

thentselves don't agree as to which index terms should be

Inaccurate though these models are, it Nould be

intere3ting to use .them predictively and to ask humans how

127
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they rated the indexing derived from this mechanical source.

Perhaps these :models produce indexing no worse than a

human's.

There is an implied theory of the indexerll in this study

which assumes that the indexer can be modelled by some

combination of textual clues. The object of the

investigation was to find out which clues were most important

and how much of the indexing they accounted for. This is a

very elementary theory of how indexing proceeds. A future

study could begin to lay down a much more sophisticated

theory of the indexer with some of the evidence available

from this dissertation. For instance, two-word terms seem to

be the most dependable for purposes of prediction. Suppose

we start with a model to predici just two-word terms. we

might say that if the term under consideration is a two-word

term, then if that term, or if a stemmed version of that term

is in the document, then the term should be assigned.

Further elaboration of this simple flowchart model could be

tested against the actual index terms assigned until some

reasonable fit occurred. We could then test this flowchart

model against other indexers to learn how accurate and

complete it is.
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1 MN 3T three-word main descriptor entry in title
2 MN 3A three-word sain entry in abstract
3 MN 2T two-word main entry in title
4 MN 2A two-word main entry in abstract
5 MN HT header word ln title
6 MN HA header word -:Ln abstract
7 MN M2T modifier word of main entry in title
P MN M2A modifier2 word of main entry in abstract
9 MN M1T modifierl word of main entry in title

10 MN M1A modifierl word of main enfry tn abstract

11 ST 3T
12 ST 3A
13 ST 2T
14 ST 2A
15 ST HT
16 ST HA
17 ST M2T
18 ST M2A
19 ST M1T
20 ST M1A

21 US 3T
22 US 3A
23 US 2T
24 US 2A
25 US HT
26 US HA
27 US M2T
28 US M2A
29 US M1T
30 US MIA

31 BR 3T
32 BR 3A
33 BR 2T
34 BR 2A
35 BR HT
36 BR HA
37 BR M2T
38 BR M2A

BR M1T
40 BP MIA

three-word stem descriptor in title
three-word stem descriptor in abstract
two-word stem in title
two-word stem in abstract
header stem in title
header stem in abstract,
modifter2 word of stem in title
modifter2 word of stem in abstract
modifier/ word of stem in title
modifier/ word of stem in abstract

three-word use reference in title
three-word use reference in abstract
two-word use reference in title
two-word use reference in abstract
header of use reference in title
header of use reference in abstract
modifter2 word of use reference in title
modifier2 word of use reference in abstract
modifier/ word of use reference in title
modifier/ word of use reference in abstract

three-word broader term in title
three-word broader term in abstract
two-word broader term in title
two-werd broader term in abstract
header word of brcader term in title
header word of broader term in abstract
modtf1er2 wcrd of broader term in title
modifer2 word of broader term in at-fstract
modifier1 word of broader term in title
modtfierl word of broader term in abstract
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Figure

number

(3.01 Clue
Acronyms

acronym

NP 3T'
NR 3A

Types Used in the Two Models and the
Used for Them (continued)

descri2tion

41
42

three-word narrower term in title
three-word narrower term in abstract

43 NE 2T tuo-wovd narrower term in title
44 NE 2A two-word narrower term in abstract
45 NE HT header of narrower term in t5Ale
46 NE FIA header of narrower term in abstract
47 NE M2T modifier2 of narrower term in title
48 NP M2A modifier2 of narrower term in abstract
49 NP I1T modifierl of narrower term in title
50 NE M1ii. modifierl of narrower term in abstract

51 FL 3T three-word related term in title
52 FL 3. three-word related term in abstract
53 FL 27 two-word related term in title
54 FL 2A two-word related term in abstract
55 FL HT header word of related term in title
56 EL HA header word of related term in abstract'
57 FL M2T modifier2 word of related term in title
58 FL M2A modifier2 word of related term i'll abstract
59 FL MIT modifierl word of related term in title
60 RL MIA modifierl word of related term in abstract



124

Figure 6.02 Relative Importance of Clue Types for
All Indexers

clue_ B P2 Increase B Coefficient
in R2 of Full_Eguation

MN 2A
US M2A
ST HT
US 2A
US M1T
ST M2T
MN HA
BP MIT
uS HA
ST 2T
MN 2T
ST Z,2A
MV 3A
US M2T
US MIA
RI 2A
ST 2A
BP HT_
MN M1T
RI M2T
PI 2T
NP HA
MN HT
ST HA
MN M2T
US HT
PI HT
MN 11A
NP MIT
TUR HT
PI MIT
NP 2T
RI HA
ST 3A
NP M1A
BP M2A
BE HA
MN M2A
PI M2A
BR M2T
NR M2T
BR 2A
ST M1T
RI M1A
BP M1A
ST MIA
NP 2A

.3863
4347
.4565
.4771
.4901
.4998
.5060
.5097
.5126
.5153
.5197
.5224
.5247
.5269
.5288
.5302
.5312
.5321
.5329
.5336
.5342
.5348
.5353
.5357
.5361
.5364
.5367
.5370
.5372
.5374
.5376
.5378
.5379
.5380
.5382
.5333
.5384
.5384
.5385
.5385
.5385
.5386
.5385
.5385
.5386
.5386
.5385

1492
.1890
.2084
.2277
.2402
.2498
.2560
.2598
.2628
.2655
.2701
.2729
.2753
.2776
.2796
,2811
.2822
.2831
.2840
.2847
.2854
.2860
.2865
.2870
.2874
.2877
.2881
.2884
.2886
.2888
.2890
.2892
.2894
.2895
.2897
.2898
.2899.
.2899
.2900
.2900
.2900
.2900
.2901
.2901
.2901
.2901
.2901

.1492

.0397

.0194

.0193

.0126

.0096

.0062

.0038

.0030

.0027

.0046

.0028

.0025
..0023
.0020
.0014
.0111
.0010
.0009
.0006
.0007
.0006
.0005
.0005
.0004
.0004
.00 q

.00

.0C

.0C

.0

.0 2

.0, 2

.0 1

.0 02

.0,01

.0001

.0001

.0001

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

1.81124
0.03572
0.18623
2.69215
1.87261
Q.09849
0.04049
0.84427
0.05867
6.79555
-5.80765
0.04035
5.45449
0.34074
0.10880
0.25544
0.72928
-0.13666
0,31201
0..06040
-2.23822
0.00686
0.22254
0.03465
0.14794
-0.13123
0.03457
0.07221
-0.23186
-0.01565
0.12045
-0.79571
-0.00342
-1.62292
-0.23186
0.01967
-0.01159
0.02115
-0.00404
-0.02564
0.01266
-0.10282
0.09310
0.00524
-0.00881
-0.01367
-0.01191

(A=0.05118)
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Figure

clue

6.03 Relative Importance
Librarian Indexers

R2

oif Clue Types for

Increase
in_R2

MN 2A .4068 .1655 .1655
US 2A .4558 .2077 .0423
ST HA .4735 .0165
US M2A .4889 .2390 .0148
ST M2A .4978 .2478. .0087
US MIT .5046 .2546 .0068
ST 2T .5097 .2598 .0053
MN 2T .5139 .2641 .0042
MN HT .5180 .2683 .0042
ST 2A .5207 .2712 .0029
BP M1T .5226 .2731 .0019
RI M2T .5242 .2748 0017
MN 3A .5257 .2764 .J01_
MN MIT .5271 .2778 .0014
US M1A .5283 .2791 .0013
ST M2T 45293 .2801 .0010
US HA .5302 .2812 .0010
BR HT .5310 .2820 .0008
NR M1T .5316 .2826 .0006
NR M2A .5323 .2833 .0007
US M2T .5327 .2838 .0005
US HT .5332 .2843 .0005
MN M2A .5336 .2847 .0004
BR M2A .5340 .2851 .0004
RI 2A .5343 .2855 .0004
RI 2T .5347 .2859 .0004
BR HA .5350 .2862 .0003
NP HA ,5352 .2864 .0002
NE 2A .5354 .2866 .0002
NR HT .5356 .2868 .0002
RI HT .5357 .2870 .0001
RI HA .5358 .2871 .0001
ST 3A .5359 .2872 .0001
MN HA .5360 .2873 .0001
ST HT .5361 .2874 .0001
NE M2T .5362 .2875 .0001
RI MIA .5362. .2875 .0001
RI M2A .5363 .2876 0001
MN M1A .5363 .2877 .0001
NR M1A .5364 .2877 .0000
NM 2T .5364 .2877 .000C
PI WIT .5364 .2877 .0000
MN M2T .5364 .2877 .0000
BR MIA .5364 .2877 .0000
BR M2T .5364 .2877 .0000

1
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Figuir.e 6.04 Relative
Engineez

Importance
and Scientist

11 2

of Clue Types for
Indexers

I7.1,cresise
in P2

MN 2A .2926 .0656 .0856
US M2A .3506 .1229 .0373
ST ET .3808 .1450 .0221
US M1T .3998 .1598 .0148
MN M2T .4109 i .1688 .0090
US BA .4214 .1776 .0088
US 2A .4301 .1650 .007L1
BR M1T .4362 .1903 .0053
MN HA .4399 .1935 .0032
US M2T .4432 .1964 .0030
MN 3A .4464 .1993 .0028
RL 2A .4489 .2015 .0023
ST 2T .4506 .2031 .0015
MN 2T .4546 .2067 '00036
ST M2A .4564 .2083 .0016
MN M1A .4579 .2097 .0014
BP HT .4594 .2111 .0014
RL M1T .4605 .2120 .0010
RL HT .4614 .2129 .0008
RL 2T .4623 .2137 .0008
MP 2T .4631 .2145 .0008
NE HA .4639 .2152 .0007
US M1A .4645 .2157 .0006
RL M2T .4649 .2161 .0004
NE 2A .4653 .2165 .0004
NP M2T .4655 .2167 .Q002
NP M2A .4658 .2169 .0003
NP M1A .4659 .2171 .0001
ST 3A .4662 .2173 .0003
NP HT .4664 .2175 .0002
MN HT .4666 .2177 .0002
NP MIT .4667 .2178 .0001
US HT .4668 .2179 .0001
BR M2T .4669 .2180 .0001
RL M2A .4670 .2181 .0001
BR 2A .4671 .2182 .0001
ST M1T .4671 .2182 .0001
R/ HA .4672 .2183 .0001
BE MIA .4672 .2183 .0001
MN M2A .4673 .2184 .0000
RL M1A .4.673 .2184 .0000
ST HA .4673 .2184 .0000
BP H. .4673 .2184 .0000
ST M2T .4674 .2184 .0000
MN M1T .4674 .2184 .0000
ST M1A .4674 .2184 .0000
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Figur. 6.05 The First

Steps

Five Pegression Equations

or Number of Variables in negresion

Variable 1 2 3 4 5

constant -,.0.18468 0.15769 0.12279 0.12152 0.12027

MN 2A 3.01E52 2.96815 2.93191 2.94239

US M2A 0,27927 0.27808 0.22456 0.19035

ST HT 0.50526 0.50823 0,50695

US 2A 2.52391 2.64097

US MIT 2.76123

a 4
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Appendix. Changes to lovin*s Stemming Procedures

This appendix summari.ees only the changes and additions

to the stems, codes and rules proposed by Lovin The

original maper should be consulted for a complete description

of the procedures and tables. These changes were reguleed by

the vocabulary of the documents and thesaurus used in this

thesis. The effect of each proposed change to Lovin2s

procedures was tested on Brown's "Normal and Reverse English

Word List" (19b3) to guarantee that the intended change was

not a parochial one.

The procedure used in Section 5.2.3 for stemming document

and thesaurus worth.; is dependent upon a table of stems, a set

of condition codes and a group of recoding rules. A word to

be stemmed is compared with the table cf stem endings. The

object is to obtain the l-Ingest possible match between the

end of a word and an ending in the table. With each ending

in the table is an associated "condition code". This code

specifies the conditions to be met for that particular stem.

An ending is rejected if the conditions for that ending are

not met. If the ending passes the condition code test, the

remaining stem is subjected tc the recoding rules to-

standardize spelling variations.

The following three tables give the changes and additions

to the endings', condition codes and recoding rules used by

Lavin.
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Additions and Changes to Endings and Condition Codes:

ending cond.code endi:119 cond.code

ationship B oides B

mentation EE ology C

ication,:g G aged B

ological C ents C

icantly A ered DD

ination D ison H

ionable Q ists D

ionless Q ites
,

AA

all2ed BB ment EE

atures E oide B

earity Y oids B

ements B ying C

erized H ers DD

inants B est 0

mental EE ety 0

ologic C ons S

atics B ors T

icals A er DD

ivity C ly e.
,_

mets EE Y 3
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Additions and Changes to the Condition. Codes:

not after °e/ unless /gr° precedes se'

only after 't'y '11° cr /r/

do not remove after luv,Ix'y's' unless 'so follows

lo° and minimum stem length is 3

minimum stem length is 3 and remove only after

9119 or wrl

remove only after 'c' or *r9

DD remove only after Rd°,0z/p/t/p/rwilil'ewo,eg°,°14,

except af er 'met'

EE do not remove after 1119 cr 9e9

Additions /es to Receding Rules:

5a change "ript to 'rib'

15 change 'ex' to leco except after "16

24 change 'end' to 'ens" except after "st or "m°

31 change oert* to Wers9 except after 9179 or "p'

32 change 'et' to oes0 except after 'n' or-"k°

35 change 'mart° to *mar'

36 change 'aryl to "arl'
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